[1] Amasyali, K., El-Gohary, N.M.: A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018)
[2] Han, H., Jeon, Y., Lim, S., Kim, W., Chen, K.: New developments in illumination, heating and cooling technologies for energy-efficient buildings. Energy 35(6), 2647–2653 (2010)
[3] Grynning, S., Gustavsen, A., Time, B., Jelle, B.P.: Windows in the buildings of tomorrow: energy losers or energy gainers? Energy Build. 61, 185–192 (2013)
[4] Cuce, E., Riffat, S.B.: A state-of-the-art review on innovative glazing technologies. Renew. Sustain. Energy Rev. 41, 695–714 (2015)
[5] Pal, S., Roy, B., Neogi, S.: Heat transfer modelling on windows and glazing under the exposure of solar radiation. Energy Build. 41(6), 654–661 (2009)
[6] Yang, Z., Li, X., Hu, Y.: Study on solar radiation and energy efficiency of building glass system. Appl. Therm. Eng. 26(8–9), 956–961 (2006)
[7] Prager, C., Kohl, M., Heck, M., Herkel, S.: The influence of the IR reflection of painted facades on the energy balance of a building. Energy Build. 38(12), 1369–1379 (2006)
[8] Li, Z., Chen, Q., Song, Y., Zhu, B., Zhu, J.: Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 5(5), 1901007 (2020)
[9] Liu, J., Zhou, Z., Zhang, J., Feng, W., Zuo, J.: Advances and challenges in commercializing radiative cooling. Materials Today Physics 11, 100161 (2019)
[10] Feng, C., Yang, P., Liu, H., Mao, M., Liu, Y., Xue, T., Fu, J., Cheng, T., Hu, X., Fan, H.J., Liu, K.: Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021)
[11] Wang, S., Jiang, T., Meng, Y., Yang, R., Tan, G., Long, Y.: Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021)
[12] Zhou, Z., Wang, X., Ma, Y., Hu, B., Zhou, J.: Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep. Phys. Sci. 1(11), 100231 (2020)
[13] Fan, D., Sun, H., Li, Q.: Thermal control properties of radiative cooling foil based on transparent fluorinated polyimide. Sol. Energy Mater. Sol. Cells 195, 250–257 (2019)
[14] Gamage, S., Kang, E.S., Akerlind, C., Sardar, S., Edberg, J., Kariis, H., Ederth, T., Berggren, M., Jonsson, M.P.: Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. J. Mater. Chem. C Mater. Opt. Electron Devices 8(34), 11687–11694 (2020)
[15] Lee, K.W., Lim, W., Jeon, M.S., Jang, H., Hwang, J., Lee, C.H., Kim, D.R.: Visibly clear radiative cooling metamaterials for enhanced thermal management in solar cells and windows. Adv. Funct. Mater. 2105882 (2021)
[16] Somasundaram, S., Chong, A., Wei, Z., Thangavelu, S.R.: Energy saving potential of low-e coating based retrofit double glazing for tropical climate. Energy Build. 206, 109570 (2020)
[17] Zhou, J., Ren, Y., Fu, Z., Wang, C.: Review of the research and development of low emissivity coating glass. J. Build. Struct. 28(4), 34–40 (2007)
[18] Llordés, A., Garcia, G., Gazquez, J., Milliron, D.J.: Tunable nearinfrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500(7462), 323–326 (2013)
[19] Zhou, Y., Dong, X., Mi, Y., Fan, F., Xu, Q., Zhao, H., Wang, S., Long, Y.: Hydrogel smart windows. J. Mater. Chem. A Mater. Energy Sustain. 8(20), 10007–10025 (2020)
[20] Ke, Y., Chen, J., Lin, G., Wang, S., Zhou, Y., Yin, J., Lee, P.S., Long, Y.: Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9(39), 1902066 (2019)
[21] Zhou, Y., Wang, S., Peng, J., Tan, Y., Li, C., Boey, F.Y.C., Long, Y.: Liquid thermo-responsive smart window derived from hydrogel. Joule 4(11), 2458–2474 (2020)
[22] Li, X.H., Liu, C., Feng, S.P., Fang, N.X.: Broadband light management with thermochromic hydrogel microparticles for smart windows. Joule 3(1), 290–302 (2019)
[23] Yuk, H., Zhang, T., Lin, S., Parada, G.A., Zhao, X.: Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15(2), 190–196 (2016)
[24] Zhang, E., Duan, Q., Wang, J., Zhao, Y., Feng, Y.: Experimental and numerical analysis of the energy performance of building windows with solar NIR-driven plasmonic photothermal effects. Energy Convers. Manage. 245, 114594 (2021)
[25] EnergyPlus: Weather data. See website of energyplus.net/weather 26. EnergyPlus: Documentation. See website of energyplus.net/documentation 27. Jhon, M.S., Andrade, J.D.: Water and hydrogels. J. Biomed. Mater. Res. 7(6), 509–522 (1973)
[26] Cooper, T.A., Zandavi, S.H., Ni, G.W., Tsurimaki, Y., Huang, Y., Boriskina, S.V., Chen, G.: Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9(1), 5086 (2018)
[27] Philipp, H.: Optical properties of non-crystalline Si, SiO, SiOx and SiO2. J. Phys. Chem. Solids 32(8), 1935–1945 (1971)
[28] Bass, M., Van Stryland, E.W., Williams, D.R., Wolfe, W.L.: Handbook of Optics, vol. 2. McGraw-Hill, New York (1995)
[29] Pu, S., Fu, J., Liao, Y., Ge, L., Zhou, Y., Zhang, S., Zhao, S., Liu, X., Hu, X., Liu, K., Chen, J.: Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv Mater. 32(17), e1907307 (2020)
[30] Pátek, J., Klomfar, J.: A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range. Int. J. Refrig. 29(4), 566–578 (2006)
[31] Palmer, K.F., Williams, D.: Optical properties of water in the near infrared. J. Opt. Soc. Am. 64(8), 1107–1110 (1974)
[32] Ziming, C., Fuqiang, W., Dayang, G., Huaxu, L., Yong, S.: Lowcost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window.” Sol. Energy Mater. Sol. Cells 213, 110563 (2020)
[33] Zhu, L., Raman, A.P., Fan, S.: Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015)
[34] Li, W., Shi, Y., Chen, K., Zhu, L., Fan, S.: A comprehensive photonic approach for solar cell cooling. ACS Photon. 4(4), 774–782 (2017)