• Nano-Micro Letters
  • Vol. 16, Issue 1, 277 (2024)
Wenjing Quan1,2, Jia Shi1,2, Min Zeng1,*, Wen Lv1,2..., Xiyu Chen1,2, Chao Fan1,2, Yongwei Zhang1,2, Zhou Liu1,2, Xiaolu Huang1,2, Jianhua Yang1,2, Nantao Hu1,2, Tao Wang3 and Zhi Yang1,**|Show fewer author(s)
Author Affiliations
  • 1National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • 2Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • 3Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01484-4 Cite this Article
    Wenjing Quan, Jia Shi, Min Zeng, Wen Lv, Xiyu Chen, Chao Fan, Yongwei Zhang, Zhou Liu, Xiaolu Huang, Jianhua Yang, Nantao Hu, Tao Wang, Zhi Yang. Highly Sensitive Ammonia Gas Sensors at Room Temperature Based on the Catalytic Mechanism of N, C Coordinated Ni Single-Atom Active Center[J]. Nano-Micro Letters, 2024, 16(1): 277 Copy Citation Text show less
    References

    [1] Y.J. Su, G.R. Chen, C.X. Chen, Q.C. Gong, G.Z. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021).

    [2] G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4(10), 669–673 (2009).

    [3] T. Wang, Y. Wu, Y. Zhang, W. Lv, X. Chen et al., Portable electronic nose system with elastic architecture and fault tolerance based on edge computing, ensemble learning, and sensor swarm. Sens. Actuators B: Chem. 375, 132925 (2023).

    [4] C. Jackson, G.T. Smith, D.W. Inwood, A.S. Leach, P.S. Whalley et al., Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 8, 15802 (2017).

    [5] S.Y. Jeong, Y.K. Moon, J. Wang, J.H. Lee, Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat. Commun. 14(1), 233 (2023).

    [6] T.S. Chu, C. Rong, L. Zhou, X.Y. Mao, B.W. Zhang et al., Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 35, 2206783 (2022).

    [7] L.J. Zhang, N. Jin, Y.B. Yang, X.Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15(1), 228 (2023).

    [8] A.A. Peyghan, S.F. Rastegar, N.L. Hadipour, DFT study of NH3 adsorption on pristine, Ni- and Si-doped graphynes. Phys. Lett. A 378(30–31), 2184–2190 (2014).

    [9] C.F. Yang, R. Zhao, H. Xiang, J. Wu, W.D. Zhong et al., Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions. Adv. Energy Mater. 10(37), 2002260 (2020).

    [10] M. Zhou, Y. Jiang, G. Wang, W.J. Wu, W.X. Chen et al., Single-atom Ni–N4 provides a robust cellular NO sensor. Nat. Commun. 11(1), 3188 (2020).

    [11] H. Shin, W.G. Jung, D.H. Kim, J.S. Jang, Y.H. Kim et al., Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping. ACS Nano 14(9), 11394–11405 (2020).

    [12] H. Xu, Y.T. Zhao, Q. Wang, G.Y. He, H.Q. Chen, Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 451, 214261 (2022).

    [13] Z.J. Yang, S.Y. Lv, Y.Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all–MXene sensors. Nano-Micro Lett. 14(1), 56 (2022).

    [14] M. Khazaei, A. Ranjbar, M. Ghorbani-Asl, M. Arai, T. Sasaki et al., Nearly free electron states in MXenes. Phys. Rev. B 93, 205125 (2016).

    [15] R.X. Hu, D.W. Sha, X. Cao, C.J. Lu, Y.C. Wei et al., Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv. Energy Mater. 12(47), 2203118 (2022).

    [16] S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018).

    [17] W.J. Quan, J. Shi, H.Y. Luo, C. Fan, W. Lv et al., Fully flexible MXene-based gas sensor on paper for highly sensitive room-temperature nitrogen dioxide detection. ACS Sens. 8(1), 103–113 (2023).

    [18] F.C. Cao, Y. Zhang, H.Q. Wang, K. Khan, A.K. Tareen et al., Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 34, 2107554 (2022).

    [19] X.F. Zhao, A. Vashisth, E. Prehn, W.M. Sun, S. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019).

    [20] W.Y. Chen, S.N. Lai, C.C. Yen, X.F. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14(9), 11490–11501 (2020).

    [21] J.T. Lee, B.C. Wyatt, G.A. Davis Jr., A.N. Masterson, A.L. Pagan et al., Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano 15(12), 19600–19612 (2021).

    [22] G.F. He, F.G. Ning, X. Liu, Y.X. Meng, Z.W. Lei et al., High-performance and long-term stability of MXene/PEDOT:PSS-decorated cotton yarn for wearable electronics applications. Adv. Fiber Mater. 6, 1–20 (2023).

    [23] G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996).

    [24] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996).

    [25] G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36(3), 354–360 (2006).

    [26] J.X. Li, Y.L. Du, C.X. Huo, S. Wang, C. Cui, Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 41(2), 2631–2635 (2015).

    [27] M.Q. Zhao, X.Q. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017).

    [28] L.Y. Zhu, X.Y. Miao, L.X. Ou, L.W. Mao, K.P. Yuan et al., Heterostructured α-Fe2O3@ZnO@ZIF-8 core-shell nanowires for a highly selective MEMS-based ppb-level H2S gas sensor system. Small 18, 2204828 (2022).

    [29] X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen–Coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018).

    [30] X. Zhang, H. Su, P.X. Cui, Y.Y. Cao, Z.Y. Teng et al., Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat. Commun. 14, 7115 (2023).

    [31] H.F. Xiong, A.K. Datye, Y. Wang, Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 33(50), 2004319 (2021).

    [32] S. Uzun, M. Schelling, K. Hantanasirisakul, T.S. Mathis, R. Askeland et al., Additive-free aqueous MXene inks for thermal inkjet printing on textiles. Small 17(1), 2006376 (2021).

    [33] J.X. Ma, S.H. Zheng, Y.X. Cao, Y.Y. Zhu, P. Das et al., Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv. Energy Mater. 11(23), 2100746 (2021).

    [34] C.F. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019).

    [35] J. Liu, L. Mckeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2–MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022).

    [36] J. Jang, H. Kang, H.C.N. Chakravarthula, V. Subramanian, Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv. Electron. Mater. 1(7), 1500086 (2015).

    [37] I. Caballero-Quintana, J.L. Maldonado, M.A. Meneses-Nava, O. Barbosa-Garcia, J. Valenzuela-Benavides et al., Semiconducting polymer thin films used in organic solar cells: a scanning tunneling microscopy study. Adv. Electron. Mater. 5(2), 1800499 (2019).

    [38] O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10(6), 429–433 (2011).

    [39] Y.Z. Shao, L.S. Wei, X.Y. Wu, C.M. Jiang, Y. Yao et al., Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13(1), 3223 (2022).

    [40] X.Y. Chen, L.W. Kong, J.A.A. Mehrez, C. Fan, W.J. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15(1), 149 (2023).

    [41] X.T. Jiang, A.V. Kuklin, A. Baev, Y.Q. Ge, H. Agren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020).

    [42] G.P. Neupane, B.W. Wang, M. Tebyetekerwa, H.T. Nguyen, M. Taheri et al., Highly enhanced light-matter interaction in MXene quantum dots-monolayer WS2 heterostructure. Small 17(11), 2006309 (2021).

    [43] T. Cheng, Y.Z. Zhang, S. Wang, Y.L. Chen, S.Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31(24), 2101303 (2021).

    [44] J. Li, J. Cao, B. Lu, G.Y. Gu, 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 8(9), 604–622 (2023).

    [45] J.M. Luo, C.L. Wang, H. Wang, X.F. Hu, E. Matios et al., Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29(3), 1805946 (2019).

    [46] Q.X. Feng, B.Y. Huang, X.G. Li, Graphene-based heterostructure composite sensing materials for detection of nitrogen-containing harmful gases. Adv. Funct. Mater. 31(41), 2104058 (2021).

    Wenjing Quan, Jia Shi, Min Zeng, Wen Lv, Xiyu Chen, Chao Fan, Yongwei Zhang, Zhou Liu, Xiaolu Huang, Jianhua Yang, Nantao Hu, Tao Wang, Zhi Yang. Highly Sensitive Ammonia Gas Sensors at Room Temperature Based on the Catalytic Mechanism of N, C Coordinated Ni Single-Atom Active Center[J]. Nano-Micro Letters, 2024, 16(1): 277
    Download Citation