[1] Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 9199-9204(2014).
[2] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 326, 123-125(2009).
[3] Zhou M Q, Langerock B, Wells K C et al. An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model[J]. Atmospheric Measurement Techniques, 12, 1393-1408(2019).
[4] Wang Q, Wang S C, Liu T Y et al. Research progress of multi-component gas detection by photoacoustic spectroscopy[J]. Spectroscopy and Spectral Analysis, 42, 1-8(2022).
[5] Karlovets E V, Kassi S, Tashkun S A et al. The absorption spectrum of nitrous oxide between 8325 and 8622 cm-1[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 262, 107508(2021).
[6] Dai L X, Liang M J, Zhang Y et al. Review of the satellite remote sensing studies of the non-CO2 greenhouse gas N2O[J]. China Environmental Science, 2, 1-18(2023).
[7] Sun L Y, Niu M S, Chen J X et al. Nitrogen dioxide detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 49, 2310002(2022).
[8] Chen D Y, Zhou L, Yang F M et al. Application progress of cavity-enhanced absorption spectroscopy (CEAS) in atmospheric environment research[J]. Spectroscopy and Spectral Analysis, 41, 2688-2695(2021).
[9] Wu Z W, Dong Y T, Zhou W D. Near infrared cavity enhanced absorption spectroscopy study of N2O[J]. Spectroscopy and Spectral Analysis, 34, 2081-2084(2014).
[10] Tang J. Highly sensitive detection technology of trace gases based on cavity ring-down spectroscopy[D](2019).
[11] Bai W G. Preliminary study of satellite remote sensing of greenhouse gases methane of Chinese Academy of Meteorological Sciences[D](2010).
[12] Berhe T Y, Tsidu G M, Blumenstock T et al. Methane and nitrous oxide from ground-based FTIR at Addis Ababa: observations, error analysis, and comparison with satellite data[J]. Atmospheric Measurement Techniques, 13, 4079-4096(2020).
[13] Clarke G B, Wilson E L, Miller J H et al. Uncertainty analysis for the miniaturized laser heterodyne radiometer (mini-LHR) for the measurement of carbon dioxide in the atmospheric column[J]. Measurement Science and Technology, 25, 055204(2014).
[14] Tan T, Cao Z S, Wang G S et al. Study on the technology of the 4.4 μm mid-infrared laser heterodyne spectrum[J]. Spectroscopy and Spectral Analysis, 35, 1516-1519(2015).
[15] Lu X J, Cao Z S, Huang Y B et al. Laser heterodyne spectrometer for solar spectrum measurement in the 3.53 μm region[J]. Optics and Precision Engineering, 26, 1846-1854(2018).
[16] Weidmann D, Tsai T, MacLeod N A et al. Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry[J]. Optics Letters, 36, 1951-1953(2011).
[17] Xue Z Y, Li J, Liu X H et al. Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection[J]. Acta Physica Sinica, 70, 217801(2021).
[18] Deng H. Research on column measurement method of main greenhouse gas based on laser heterodyne spectroscopy[D](2020).
[19] Huang J. Research on near-infrared laser heterodyne spectroscopy detection technology and greenhouse gases measurements[D](2022).
[20] Huang J, Huang Y B, Lu X J et al. Measurement and concentration inversion of ozone in Golmud by laser heterodyne spectrometer[J]. Acta Photonica Sinica, 50, 0401002(2021).
[21] Shen F J, Wang G X, Wang J J et al. Transportable mid-infrared laser heterodyne radiometer operating in the shot-noise dominated regime[J]. Optics Letters, 46, 3171-3174(2021).
[22] Ma Z F, Zhang C X, Zhang Z Y et al. Signal-noise ratio in optical heterodyne detection[J]. Acta Optica Sinica, 27, 889-892(2007).
[23] Teich M C. Infrared heterodyne detection[J]. Proceedings of the IEEE, 56, 37-46(1968).
[24] Siegman A E. The antenna properties of optical heterodyne receivers[J]. Applied Optics, 5, 1588-1594(1966).
[25] Kostiuk T, Mumma M J. Remote sensing by IR heterodyne spectroscopy[J]. Applied Optics, 22, 2644(1983).
[26] Weidmann D, Reburn W J, Smith K M. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies[J]. The Review of Scientific Instruments, 78, 073107(2007).
[27] Rodgers C D[M]. Inverse methods for atmospheric sounding: theory and practice(2000).
[29] Huang Y B, Cao Z S, Lu X J et al. Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology[J]. Chinese Journal of Quantum Electronics, 37, 497-505(2020).
[30] Zhang S L, Huang Y B, Lu X J et al. Retrieval of atmospheric H2O column concentration based on mid-infrared inter-band cascade laser heterodyne radiometer[J]. Spectroscopy and Spectral Analysis, 39, 1317-1322(2019).
[31] Huang J, Huang Y B, Lu X J et al. Design of 3.66 μm laser heterodyne spectrometer and retrieval of water vapor column concentration[J]. Journal of Infrared and Millimeter Waves, 39, 610-618(2020).
[32] Lu X J, Cao Z S, Tan T et al. Instrument line shape function of laser heterodyne spectrometer[J]. Acta Physica Sinica, 68, 064208(2019).