[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7: 845-854.
[3] Lu X F, Li G R, Tong Y X. A review of negative electrode materials for electrochemical supercapacitors[J]. Science China Technological Sciences, 2015, 58(11): 1799-1808.
[4] Conway B E. Electrochemical supercapacitors:scientific fundamentals and technological applications[M]. New York: Kluwer Academic/Plenum Press, 1999.
[6] Wei G, Neelam Singh, Li S, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 2011, 6(8): 496-500.
[8] Xu B, Chen Y F, Wei G, et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J]. Materials Chemistry & Physics, 2010, 124(1): 504-509.
[9] Wang H Y, Li B, Teng J X, et al. N-doped carbon-coated TiN exhibiting excellent electrochemical performance for supercapacitors[J]. Electrochimica Acta, 2017, 257: 56-63.
[10] Saravanakumar B, Purushothaman K K, Muralidharan G. Interconnected V2O5 nanoporous network for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4484-4490.
[12] Sun D F, Lang J W, Yan X B, et al. Fabrication of TiN nanorods by electrospinning and their electrochemical properties[J]. Journal of Solid State Chemistry, 2011, 184(5): 1333-1338.
[13] Xie Y B, Wang Y, Du H X. Electrochemical capacitance performance of titanium nitride nanoarray[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178(20): 1443-1451.
[14] An G H, Lee D Y, Ahn H J. Vanadium nitride encapsulated carbon fibre networks with furrowed porous surfaces for ultrafast asymmetric supercapacitors with robust cycle life[J]. Journal of Materials Chemistry A, 2017, 5(37): 19714-19720.16-19.
[15] Lee K H, Lee Y W, Ko A R, et al. Single-crystalline mesoporous molybdenum nitride nanowires with improved electrochemical properties[J]. Journal of the American Ceramic Society, 2013, 96(1): 37-39.
[16] Zhao J H, Lin J, Wei H, et al. Surface enhanced Raman scattering substrates based on titanium nitride nanorods[J]. Optical Materials, 2015, 47: 219-224.
[19] Gao B, Xiao X, Su J J, et al. Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties[J]. Applied Surface Science, 2016, 383: 57-63.
[21] Wang P Y, Wang R T, Lang J W, et al. Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability[J]. Journal of Materials Chemistry A, 2016, 4(25): 9760-9766.
[22] Huang C, Yang Y, Fu J J, et al. Flexible Nb4N5/rGO electrode for high-performance solid state supercapacitors[J]. Nanoscience and Nanotechnology, 2018, 18: 30-38.
[23] Wang G, Qian B Q, Wang Y W, et al. Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization[J]. New Journal of Chemistry, 2016, 40(4): 3786-3792.
[24] Arico A, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-77.
[25] An K H, Won S, Kim Y, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Advanced Functional Materials, 2001, 11(5): 387-392.
[26] Kaempgen M, Candace K Chan, Ma J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes[J]. Nano Letters, 2009, 9(5): 1872.
[27] Lu X H, Wang G N, Zhai T, et al. Hydrogenated TiO2 Nanotube Arrays for Supercapacitors[J]. Nano Letters, 2012, 12(3): 1690-1696.
[28] Yang Y, Ruan G D, Xiang C S, et al. Flexible three-dimensional nanoporous metal-based energy devices[J]. Journal of the American Chemical Society, 2014, 136(17): 6187-6190.
[29] Cui H L, Zhu G L, Liu X Y, et al. Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors[J]. Advanced Science, 2016, 2(12): 1500126.
[30] Mirvakili S M, Hunter I W. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors[J]. Advanced Materials, 2017, 29(27): 1700671.1-1700671.6.
[31] Liu K, Yao Y, Lv T, et al. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors[J]. Journal of Power Sources, 2020, 446: 227355.
[32] Koscielska B. Electrical conductivity of NbN-SiO2 films obtained by ammonolysis of Nb2O5-SiO2 sol-gel derived coatings[J]. Journal of Non-Crystalline Solids, 2008, 354(14): 1549-1552.
[33] Alfonso J E, Buitrago J, Torres J, et al. Influence of fabrication parameters on crystallization, microstructure, and surface composition of NbN thin films deposited by rf magnetron sputtering[J]. Journal of Materials Science, 2010, 45(20): 5528-5533.
[34] Jouve G, Severac C, Cantacuzene S. XPS study of NbN and (NbTi)N superconducting coatings[J]. Thin Solid Films, 1996, 287(1-2): 146-153.
[35] Baunemann A, Bekermann D, Thiede T B, et al. Mixed amido/imido/guanidinato complexes of niobium:potential precursors for MOCVD of niobium nitride thin films[J]. Dalton Transactions, 2008, 28(28): 3715-3722.
[36] Gao S S, Tang Y K, Wang L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263.
[39] Shim H W, Lim A H, Kim J C, et al. Scalable one-pot bacteria-templating synthesis route toward hierarchical, porous-Co3O4 superstructure for supercapacitor electrodes[J]. Scientific Reports, 2013, 3(7): 2325.