• Bulletin of the Chinese Ceramic Society
  • Vol. 43, Issue 2, 509 (2024)
LI Jiandong1, YANG Zhenying1,*, and DING Yangfei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    LI Jiandong, YANG Zhenying, DING Yangfei. Preparation of BMIMBr Cement-Based Electrolyte and Its Application in Structural Supercapacitor[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 509 Copy Citation Text show less
    References

    [1] KHARE V, NEMA S, BAREDAR P. Solar-wind hybrid renewable energy system: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 23-33.

    [2] BENEDEK J, SEBESTYN T T, BARTK B. Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 516-535.

    [3] RAHMAN A, SRIKUMAR V, SMITH A D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks[J]. Applied energy, 2018, 212: 372-385.

    [4] HUO T, REN H, ZHANG X, et al. China’s energy consumption in the building sector: a statistical yearbook-energy balance sheet based splitting method[J]. Journal of cleaner production, 2018, 185: 665-679.

    [5] MANTHIRAM A, CHUNG S H, ZU C. Lithium-sulfur batteries: progress and prospects[J]. Advanced materials, 2015, 27(12): 1980-2006.

    [6] ZHOU G, LI F, CHENG H M. Progress in flexible lithium batteries and future prospects[J]. Energy & Environmental Science, 2014, 7(4): 1307-1338.

    [7] YANG W, YANG W, KONG L, et al. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition[J]. Carbon, 2018, 127: 557-567.

    [8] MOHAMMADI A, ARSALANI N, TABRIZI A G, et al. Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 334: 66-80.

    [9] KIM Y B, KIM I T, SONG M J, et al. Synthesis of a polyacrylonitrile/tetrachloro-1,4-benzoquinone gel polymer electrolyte for high-performance Li-air batteries[J]. Journal of Membrane Science, 2018, 563: 835-842.

    [10] KWON T, CHOI I, PARK M J. Highly conductive solid-state hybrid electrolytes operating at subzero temperatures[J]. ACS applied materials & interfaces 2017, 9(28): 24250-24258.

    [11] LIU Y, LIN D, YUEN P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29(10): 1605531.

    [12] PENG X, LIU H, YIN Q, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors[J]. Nature communications, 2016, 7(1): 11782.

    [13] CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184.

    [14] CHENG S H S, HE K Q, LIU Y, et al. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte[J]. Electrochimica Acta, 2017, 253: 430-438.

    [15] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.

    [16] JO G, KIM O, KIM H, et al. End-functionalized block copolymer electrolytes: effect of segregation strength on ion transport efficiency[J]. Polymer Journal, 2016, 48(4): 465-472.

    [17] INCEOGLU S, ROJAS A A, DEVAUX D, et al. Morphology-conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries[J]. ACS Macro Letters, 2014, 3(6): 510-514.

    [18] SAIKIA D, CHANG Y J, FANG J, et al. Highly conducting blend hybrid electrolytes based on amine ended block copolymers and organosilane with in-situ formed silica particles for lithium-ion batteries[J]. Journal of Power Sources, 2018, 390: 1-12.

    [19] LEE J H, LIM J Y, PARK J T, et al. Polymethacrylate-comb-copolymer electrolyte for solid-state energy storage devices[J]. Materials & Design, 2018, 149: 25-33.

    [20] LIM J Y, KANG D A, KIM N U, et al. Bicontinuously crosslinked polymer electrolyte membranes with high ion conductivity and mechanical strength[J]. Journal of Membrane Science, 2019, 589: 117250.

    [21] CHOI U H, JUNG B M. Ion conduction, dielectric and mechanical properties of epoxy-based solid polymer electrolytes containing succinonitrile[J]. Macromolecular Research, 2018, 26: 459-465.

    [22] KIDO R, UENO K, IWATA K, et al. Li+ ion transport in polymer electrolytes based on a glyme-Li salt solvate ionic liquid[J]. Electrochimica Acta, 2015, 175: 5-12.

    [23] BASILE A, HILDER M, MAKHLOOGHIAZAD F, et al. Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies[J]. Advanced Energy Materials, 2018, 8(17): 1703491.

    [24] WONG J I C, RAMESH S, JUN H K, et al. Development of poly (vinyl alcohol) (PVA)-based sodium ion conductors for electric double-layer capacitors application[J]. Materials Science and Engineering: B, 2021, 263: 114804.

    LI Jiandong, YANG Zhenying, DING Yangfei. Preparation of BMIMBr Cement-Based Electrolyte and Its Application in Structural Supercapacitor[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 509
    Download Citation