• Advanced Photonics
  • Vol. 7, Issue 1, 016001 (2025)
Qi Zeng1, Xinyue Yang1, Yimin Deng1, Wei Cao1,*, and Peixiang Lu1,2
Author Affiliations
  • 1Huazhong University of Science and Technology, School of Physics and Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 2Optics Valley Laboratory, Wuhan, China
  • show less
    DOI: 10.1117/1.AP.7.1.016001 Cite this Article Set citation alerts
    Qi Zeng, Xinyue Yang, Yimin Deng, Wei Cao, Peixiang Lu, "All-optical spatiotemporal oscilloscope for few-cycle optical waveform," Adv. Photon. 7, 016001 (2025) Copy Citation Text show less
    References

    [1] M. Hentschel et al. Attosecond metrology. Nature, 414, 509-513(2001).

    [2] R. Kienberger et al. Atomic transient recorder. Nature, 427, 817-821(2004).

    [3] E. Goulielmakis et al. Real-time observation of valence electron motion. Nature, 466, 739-743(2010).

    [4] H. J. Wörner et al. Following a chemical reaction using high-harmonic interferometry. Nature, 466, 604-607(2010).

    [5] G. Sansone et al. Electron localization following attosecond molecular photoionization. Nature, 465, 763-766(2010).

    [6] M. Schultze et al. Attosecond band-gap dynamics in silicon. Science, 346, 1348-1352(2014).

    [7] M. Garg et al. Multi-petahertz electronic metrology. Nature, 538, 359-363(2016).

    [8] Z. Tao et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science, 353, 62-67(2016).

    [9] P. M. Paul et al. Observation of a train of attosecond pulses from high harmonic generation. Science, 292, 1689-1692(2001).

    [10] R. Trebino et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum., 68, 3277-3295(1997).

    [11] E. Goulielmakis et al. Direct measurement of light waves. Science, 305, 1267-1269(2004).

    [12] S. Sederberg et al. Attosecond optoelectronic field measurement in solids. Nat. Commun., 11, 430(2020).

    [13] D. Zimin et al. Petahertz-scale nonlinear photoconductive sampling in air. Optica, 8, 586-590(2021).

    [14] Y. Liu et al. Single-shot measurement of few-cycle optical waveforms on a chip. Nat. Photonics, 16, 109-112(2022).

    [15] M. R. Bionta et al. On-chip sampling of optical fields with attosecond resolution. Nat. Photonics, 15, 456-460(2021).

    [16] S. B. Park et al. Direct sampling of a light wave in air. Optica, 5, 402-408(2018).

    [17] H. Xu et al. Direct in situ measurement of an ultrashort pulse using an optical hologram. Phys. Rev. Appl., 17, 014046(2022).

    [18] K. Mi et al. Perturbed ac stark effect for attosecond optical-waveform sampling. Phys. Rev. Appl., 13, 014032(2020).

    [19] C. Virgo et al. GW150914: the advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett., 116, 131103(2016).

    [20] J. Aasi et al. Advanced LIGO. Class. Quantum Gravity, 32, 074001(2015).

    [21] M. Meckel et al. Laser-induced electron tunneling and diffraction. Science, 320, 1478-1482(2008).

    [22] R. K. Kushawaha et al. From double-slit interference to structural information in simple hydrocarbons. Proc. Natl. Acad. Sci., 110, 15201-15206(2013).

    [23] P. Carpeggiani et al. Vectorial optical field reconstruction by attosecond spatial interferometry. Nat. Photonics, 11, 383-389(2017).

    [24] Z. Yang et al. All-optical attosecond time domain interferometry. Natl. Sci. Rev., 8, nwaa211(2021).

    [25] A. S. Wyatt et al. Attosecond sampling of arbitrary optical waveforms, FW6E.1(2017).

    [26] K. T. Kim et al. Petahertz optical oscilloscope. Nat. Photonics, 7, 958-962(2013).

    [27] K. T. Kim et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nat. Phys., 9, 159-163(2013).

    [28] S. Akturk et al. Spatio-temporal couplings in ultrashort laser pulses. J. Opt., 12, 093001(2010).

    [29] J. Blöchl et al. Spatiotemporal sampling of near-petahertz vortex fields. Optica, 9, 755-761(2022).

    [30] Y. Liu et al. Field-resolved space–time characterization of few-cycle structured light pulses. Optica, 11, 846-851(2024).

    [31] N. Dudovich et al. Measuring and controlling the birth of attosecond XUV pulses. Nat. Phys., 2, 781-786(2006).

    [32] M. Lewenstein et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A, 49, 2117-2132(1994).

    [33] G. Sansone et al. Nonadiabatic quantum path analysis of high-order harmonic generation: role of the carrier-envelope phase on short and long paths. Phys. Rev. A, 70, 013411(2004).

    [34] H. J. Shin et al. Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field. Phys. Rev. Lett., 83, 2544-2547(1999).

    [35] E. Priori et al. Nonadiabatic three-dimensional model of high-order harmonic generation in the few-optical-cycle regime. Phys. Rev. A, 61, 063801(2000).

    [36] C. Hernández-García et al. Quantum-path signatures in attosecond helical beams driven by optical vortices. New J. Phys., 17, 093029(2015).

    [37] I. J. Sola et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nat. Phys., 2, 319-322(2006).

    [38] P. Antoine, A. L’Huillier, M. Lewenstein. Attosecond pulse trains using high–order harmonics. Phys. Rev. Lett., 77, 1234-1237(1996).

    [39] H. Vincenti, F. Quéré. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett., 108, 113904(2012).

    [40] K. T. Kim et al. Photonic streaking of attosecond pulse trains. Nat. Photonics, 7, 651-656(2013).

    [41] X. He et al. Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications. Phys. Rev. A, 79, 063829(2009).

    [42] S. Gilbertson et al. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers. Phys. Rev. Lett., 105, 093902(2010).

    Qi Zeng, Xinyue Yang, Yimin Deng, Wei Cao, Peixiang Lu, "All-optical spatiotemporal oscilloscope for few-cycle optical waveform," Adv. Photon. 7, 016001 (2025)
    Download Citation