• Optical Communication Technology
  • Vol. 45, Issue 3, 42 (2021)
HUANG Qiang1, FENG Xiaofang1, HE Yun1, XIE Junyi1, and LIAN Weihua1,2,*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2021.03.010 Cite this Article
    HUANG Qiang, FENG Xiaofang, HE Yun, XIE Junyi, LIAN Weihua. Nonlinear phase noise tracking algorithm based on modified DD-RLS[J]. Optical Communication Technology, 2021, 45(3): 42 Copy Citation Text show less
    References

    [1] SECONDINI M, AGRELL E, FORESTIERI E, et al. Nonlinearity mitigation in WDM systems: models, strategies, and achievable rates[J]. Journal of Lightwave Technology, 2019, 37(10): 2270-2283.

    [2] VASSILIEVA O, KIM I, IKEUCHI T. Enabling technologies for fiber nonlinearity mitigation in high capacity transmission systems[J]. Journal of Lightwave Technology, 2019, 37(1): 50-60.

    [3] ELLISA D, TAN M, IQBAL M A, et al. 4 Tb/s transmission reach enhancement using 10×400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation[J]. Journal of Lightwave Technology, 2016, 34(8): 1717-1723.

    [4] YOSHIMA S, SUN Y, LIU Z, et al. Mitigation of nonlinear effects on WDM QAM signals enabled by optical phase conjugation with efficient bandwidth utilization[J]. Journal of Lightwave Technology, 2017, 35(4): 971-978.

    [5] WANG H, LUO T, JI Y. Multi-channel phase regeneration of QPSK signals based on phase sensitive amplification[J]. Frontiers of Optoelectronics, 2019, 12(1): 24-30.

    [6] DAR R, WINZER P J. On the limits of digital back-propagation in fully loaded WDM systems[J]. IEEE Photonics Technology Letters, 2016, 28(11): 1253-1256.

    [7] FAN Y , DOU L , TAO Z , et al. A high performance nonlinear compensation algorithm with reduced complexity based on XPM model[C]// Optical Fiber Communications Conference 2014, March 11-13, 2014, San Francisco, USA. Piscataway: IEEE, 2014: 1-3

    [8] POGGIOLINI P, NESPOLA A, JIANG Y, et al. Analytical and experimental results on system maximum reach increase through symbol rate optimization[J]. Journal of Lightwave Technology, 2016, 34(8): 1872-1885.

    [13] ZHENG Q, HUANG L, LI W, et al. NSNI mitigation in bi-directional raman amplified unrepeatered system using split-DBP[J]. Journal of Lightwave Technology, 2018, 36(16): 3494-3501.

    [14] ZHENG Q, LI W, YAN R, et al. XPM mitigation in WDM systems using split nonlinearity compensation[J]. IEEE Photonics Journal, 2019, 11(6): 1-11.

    [15] LI Y, ZHENG Q, XIE Y, et al. Low complexity carrier phase estimation for m-QAM optical communication systems[J]. Photonic Network Communications, 2019, 38(1):121-128.

    [16] TKACH R, CHRAPLYVY A. Phase noise and linewidth in an inGaAsP DFB laser[J]. Journal of Lightwave Technology, 1986, 4(11): 1711-1716.

    [17] HENRY C. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1982, 18(2): 259-264.

    [18] GOLANI O, ELSON D, LAVERY D, et al. Experimental characterization of nonlinear interference noise as a process of intersymbol interference[J]. Optics Letters, 2018, 43(5):1123-1126.

    [19] DAR R, FEDER M, MECOZZI A, et al. Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation[J]. Journal of Lightwave Technology, 2015, 33(5):1044-1053.

    [20] GOLANI O, FEDER M, SHTAIF M. Kalman-MLSE equalization for NLIN mitigation[J]. Journal of Lightwave Technology, 2018, 36(12): 2541-2550.

    HUANG Qiang, FENG Xiaofang, HE Yun, XIE Junyi, LIAN Weihua. Nonlinear phase noise tracking algorithm based on modified DD-RLS[J]. Optical Communication Technology, 2021, 45(3): 42
    Download Citation