• Spectroscopy and Spectral Analysis
  • Vol. 34, Issue 12, 3333 (2014)
LUO An1、*, LI Hong-zhong2, ZHAO Ming-zhen3, YANG Zhi-jun4, LIANG Jin4, and HE Jun-guo4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2014)12-3333-07 Cite this Article
    LUO An, LI Hong-zhong, ZHAO Ming-zhen, YANG Zhi-jun, LIANG Jin, HE Jun-guo. Micro-Area Characteristics of Laminated Chert in the Volcanic Rocks of Xionger Group of Ruyang Area and Its Geological Significances[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3333 Copy Citation Text show less

    Abstract

    The Xionger Group was originated from the volcanic eruption and sedimentation in Precambrian, whose sedimentary strata at the top were named Majiahe Formation. In the Majiahe Formation, there were hydrothermal chert widely distributed, which were exhibited to be interlayers in the volcanic rocks. The polarized microscope, X-ray diffraction (XRD), Raman and electron back scatter diffraction (EBSD) were conducted to study the characteristics in micro area of the jasperite samples, which were from the sedimentary interlayers in the volcanic rocks of Majiahe Formation in Xionger Group. As shown in the microphotographs and EBSD images, the quartz in the chert had small grain size, low degree of crystallinity and close packed structure, which quite agreed with the characteristics of hydrothermal sedimentary chert. In the chert of Xionger Group, there were clear banded (or lamellar) structures which were contributed by the diversities of the grain size and mineral composition. The different bands (or lamellars) had alternative appearance repeatedly, and denoted the diversities and periodic changes in the substance supply during the precipitation. According to the results of the XRD analysis, the majority minerals of the chert was low temperature quartz, whose lattice parameters were a=b=0.491 3 nm, c=0.540 5 nm and Z=3. As denoted in the EBSD image and result of Raman analysis, several impurity minerals were formed in the chert in different stages, whose geneses and formation time were quite different. The clay minerals and pyrite were scattered in distribution, and should be contributed by the original sedimentation. On contrary, the felsic minerals and mafic silicate minerals were originated from the sedimentation of tuffaceous substance during the volcanic eruption. The minerals of volcanic genesis had relatively larger grain size, and they deposited together with the hydrothermal sediments to form the bands (or lamellars) of coarse minerals. However, the hydrothermal sedimentation contributed to the bands (or lamellars) with minerals of much smaller grain size, which therefore resulted in diversities from the other bands (or lamellars). According to this, the repeated bands (or lamellars) denoted the volcanic activities were cyclic during the formation of the chert. What’s more, the carbonate vein came from the precipitation of subsequent hydrothermal fluids in the fracture of the chert, which contributed to the changes (e.g. rising in crystallinity degree of silica and formation of microstructure of new silicate) near the interface between chert and the carbonate vein. Although there were many impurity minerals with complex genesis, the relatively lower content of silica in the chert of Xionger Group was due to the volcanic mineral mainly. Since there were impurity minerals of volcanic genesis in relatively large amount, the content of silica in the chert of Xionger Group was hence relatively low. In this study, the Raman analysis was witnessed to be an effective way in the researches on the chert, and could open out the type of mineral, micro-structure and degrees of crystallinity (or order). These characteristics were well kept in the micro-area, and played significant roles to reflect and understand the formation mechanism and subsequent evolution of the chert.
    LUO An, LI Hong-zhong, ZHAO Ming-zhen, YANG Zhi-jun, LIANG Jin, HE Jun-guo. Micro-Area Characteristics of Laminated Chert in the Volcanic Rocks of Xionger Group of Ruyang Area and Its Geological Significances[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3333
    Download Citation