• Optical Instruments
  • Vol. 46, Issue 1, 42 (2024)
Lanxia WANG and Anqi YU*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202302260026 Cite this Article
    Lanxia WANG, Anqi YU. Metal grating enhanced graphene photodetector with wide spectral response[J]. Optical Instruments, 2024, 46(1): 42 Copy Citation Text show less
    References

    [1] HASAN T, SUN Z P, WANG F Q, et al. Nanotube-polymer composites for ultrafast photonics[J]. Advanced Materials, 21, 3874-3899(2009).

    [2] SUN Z P, POPA D, HASAN T, et al. A stable, wideband tunable, near transform- limited, graphene-mode-locked, ultrafast laser[J]. Nano Research, 3, 653-660(2010).

    [3] SUN Z P, HASAN T, TORRISI F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 4, 803-810(2010).

    [4] POPA D, SUN Z, HASAN T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 98, 073106(2011).

    [5] SUN Z, HASAN T, FERRARI A C. Ultrafast lasers mode-locked by nanotubes and graphene[J]. Physica E:Low-dimensional Systems and Nanostructures, 44, 1082-1091(2012).

    [6] FANG J Z, ZHOU Z Q, XIAO M Q, et al. Recent advances in low‐dimensional semiconductor nanomaterials and their applications in high‐performance photodetectors[J]. InfoMat, 2, 291-317(2020).

    [7] LONG M S, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 29, 1803807(2019).

    [8] WAXMAN A M, GOVE A N, FAY D A, et al. Color night vision: opponent processing in the fusion of visible and IR imagery[J]. Neural Networks, 10, 1-6(1997).

    [9] GEIS M W, SPECTOR S J, GREIN M E, et al. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band[J]. IEEE Photonics Technology Letters, 19, 152-154(2007).

    [10] HEIN M A. Ultrawideb radar senss f biomedical diagnostics imaging[C]Proceedings of 2012 IEEE International Conference on UltraWideb. Syracuse: IEEE, 2012: 486 490.

    [11] YUAN S F, YU R W, MA C, et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength range[J]. ACS Photonics, 7, 1206-1215(2020).

    [12] BAI P, LI X H, YANG N, et al. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector[J]. Science Advances, 8, eabn2031(2022).

    [13] CHEN Y F, MA W L, TAN C W, et al. Broadband Bi2O2Se photodetectors from infrared to terahertz[J]. Advanced Functional Materials, 31, 2009554(2021).

    [14] FREITAG M, LOW T, XIA F N, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 7, 53-59(2013).

    [15] XU M J, XU T F, YU A Q, et al. Optoelectronic synapses based on photo‐induced doping in MoS2/h‐BN field‐effect transistors[J]. Advanced Optical Materials, 9, 2100937(2021).

    [16] TIELROOIJ K J, MASSICOTTE M, PIATKOWSKI L, et al. Hot-carrier photocurrent effects at graphene–metal interfaces[J]. Journal of Physics: Condensed Matter, 27, 164207(2015).

    [17] SONG J C W, LEVITOV L S. Energy flows in graphene: hot carrier dynamics and cooling[J]. Journal of Physics:Condensed Matter, 27, 164201(2015).

    [18] YU A Q, YANG Z Y, CAI M, et al. Graphene plasmons-enhanced terahertz response assisted by metallic gratings[J]. Nanophotonics, 11, 4737-4745(2022).

    Lanxia WANG, Anqi YU. Metal grating enhanced graphene photodetector with wide spectral response[J]. Optical Instruments, 2024, 46(1): 42
    Download Citation