• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 4, 1423 (2022)
JIANG Changxi*, ZHOU Lijuan, ZHUANG Yinghua, LIAO Shengjun, and WANG Jianjun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    JIANG Changxi, ZHOU Lijuan, ZHUANG Yinghua, LIAO Shengjun, WANG Jianjun. Effect of Ternary Composite Sintering Agent Er2O3-Mg2Si-Yb2O3 on Properties of Silicon Nitride Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1423 Copy Citation Text show less
    References

    [1] HU F, XIE Z P, ZHANG J, et al. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics[J]. Rare Metals, 2020, 39(5): 463-478.

    [2] WANG W D, YAO D X, LIANG H Q, et al. Effect of in situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2020, 40(15): 5316-5323.

    [3] PARK Y J, PARK M J, KIM J M, et al. Sintered reaction-bonded silicon nitrides with high thermal conductivity: the effect of the starting Si powder and Si3N4 diluents[J]. Journal of the European Ceramic Society, 2014, 34(5): 1105-1113.

    [4] GOLLA B R, KO J W, KIM J M, et al. Effect of particle size and oxygen content of Si on processing, microstructure and thermal conductivity of sintered reaction bonded Si3N4[J]. Journal of Alloys and Compounds, 2014, 595: 60-66.

    [5] ZHOU Y, HYUGA H, KUSANO D, et al. Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction-bonded silicon nitrides[J]. Journal of the American Ceramic Society, 2019, 102(4): 1579-1588.

    [6] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. Journal of the European Ceramic Society, 2014, 34(10): 2585-2589.

    [7] LU H, BAILEY C, YIN C Y. Design for reliability of power electronics modules[J]. Microelectronics Reliability, 2009, 49(9/10/11): 1250-1255.

    [8] BUTTAY C, PLANSON D, ALLARD B, et al. State of the art of high temperature power electronics[J]. Materials Science and Engineering: B, 2011, 176(4): 283-288.

    [9] MURAYAMA N, HIRAO K, SANDO M, et al. High-temperature electro-ceramics and their application to SiC power modules[J]. Ceramics International, 2018, 44(4): 3523-3530.

    [10] HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4[J]. Physical Review B, 2002, 65(13): 134110.

    [11] HAYASHI H, HIRAO K, KITAYAMA M, et al. Effect of oxygen content on thermal conductivity of sintered silicon nitride[J]. Journal of the Ceramic Society of Japan, 2001, 109(1276): 1046-1050.

    [12] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(39): 4563-4567.

    [13] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive[J]. Ceramics International, 2021, 47(4): 5631-5638.

    [14] WANG W D, YAO D X, LIANG H Q, et al. Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter[J]. Journal of Alloys and Compounds, 2021, 855: 157451.

    [15] WANG W D, YAO D X, CHEN H B, et al. ZrSi2-MgO as novel additives for high thermal conductivity of β-Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(3): 2090-2100.

    [16] WANG W D, YAO D X, LIANG H Q, et al. Effect of the binary nonoxide additives on the densification behavior and thermal conductivity of Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(10): 5891-5899.

    [17] LUO J, LI J G, LI M J, et al. Low-temperature densification by plasma activated sintering of Mg2Si-added Si3N4[J]. Ceramics International, 2019, 45(12): 15128-15133.

    [18] LIU W, TONG W X, LU X X, et al. Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates[J]. Ceramics International, 2019, 45(9): 12436-12442.

    [20] DUAN Y S, LIU N, ZHANG J X, et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties[J]. Journal of the European Ceramic Society, 2020, 40(2): 298-304.

    [21] GUO W M, WU L X, MA T, et al. Rapid fabrication of Si3N4 ceramics by reaction-bonding and pressureless sintering[J]. Journal of the European Ceramic Society, 2016, 36(16): 3919-3924.

    [22] MENG Q Y, ZHAO Z H, SUN Y Q, et al. Low temperature pressureless sintering of dense silicon nitride using BaO-Al2O3-SiO2 glass as sintering aid[J]. Ceramics International, 2017, 43(13): 10123-10129.

    [24] YE C C, JIANG Y, YUE X Y, et al. Effect of temperature and pre-sintering on phase transformation, texture and mechanical properties of silicon nitride ceramics[J]. Materials Science and Engineering: A, 2018, 731: 140-148.

    [25] HAMPSHIRE S, POMEROY M J. Grain boundary glasses in silicon nitride: a review of chemistry, properties and crystallisation[J]. Journal of the European Ceramic Society, 2012, 32(9): 1925-1932.

    [26] BALANDIN A, WANG K L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well[J]. Physical Review B, 1998, 58(3): 1544-1549.

    [27] YANG P, XU F H, LI J B, et al. The impact of oxygen impurity and La doping on thermodynamic properties of Si3N4 ceramic: a first-principle calculation approach[J]. Journal of the European Ceramic Society, 2020, 40(15): 5293-5297.

    [28] LIAO S J, ZHOU L J, JIANG C X, et al. Thermal conductivity and mechanical properties of Si3N4 ceramics with binary fluoride sintering additives[J]. Journal of the European Ceramic Society, 2021, 41(14): 6971-6982.

    [29] LI Y S, KIM H N, WU H B, et al. Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: the effects of Y2O3 additive content[J]. Journal of the European Ceramic Society, 2021, 41(1): 274-283.

    [35] LIU W, TONG W X, HE R X, et al. Effect of the Y2O3 additive concentration on the properties of a silicon nitride ceramic substrate[J]. Ceramics International, 2016, 42(16): 18641-18647.

    [36] KITAYAMA M, HIRAO K, TORIYAMA M, et al. Thermal conductivity of β-Si3N4: I, effects of various microstructural factors[J]. Journal of the American Ceramic Society, 2004, 82(11): 3105-3112.

    [37] YOKOTA H, ABE H, IBUKIYAMA M. Effect of lattice defects on the thermal conductivity of β-Si3N4[J]. Journal of the European Ceramic Society, 2003, 23(10): 1751-1759.

    [38] WANG X L, XIE F W, ZHANG L Q, et al. Effect of vacancy defects on the thermal conductivity of graphene nanoribbons: a molecular dynamics study[J]. International Journal of Materials and Structural Integrity, 2012, 6(1): 26.

    [39] WANG T, MADSEN G H, HARTMAIER A. Atomistic study of the influence of lattice defects on the thermal conductivity of silicon[J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(3): 035011.

    [40] HU F, ZHU T B, XIE Z P, et al. Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics[J]. Ceramics International, 2020, 46(8): 12606-12612.

    [41] KIM J M, KO S I, KIM H N, et al. Effects of microstructure and intergranular glassy phases on thermal conductivity of silicon nitride[J]. Ceramics International, 2017, 43(7): 5441-5449.

    JIANG Changxi, ZHOU Lijuan, ZHUANG Yinghua, LIAO Shengjun, WANG Jianjun. Effect of Ternary Composite Sintering Agent Er2O3-Mg2Si-Yb2O3 on Properties of Silicon Nitride Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1423
    Download Citation