• Chinese Journal of Lasers
  • Vol. 49, Issue 19, 1910003 (2022)
Hanyi Zhang1, Xinyu Zhao1, Yicheng Zhang1, Labao Zhang2, and Mingjie Sun1、*
Author Affiliations
  • 1School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • 2Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
  • show less
    DOI: 10.3788/CJL202249.1910003 Cite this Article Set citation alerts
    Hanyi Zhang, Xinyu Zhao, Yicheng Zhang, Labao Zhang, Mingjie Sun. Review of Advances in Single-Photon LiDAR[J]. Chinese Journal of Lasers, 2022, 49(19): 1910003 Copy Citation Text show less
    References

    [1] Sun S, Lin H Z, Xu Y K et al. Tracking and imaging of moving objects with temporal intensity difference correlation[J]. Optics Express, 27, 27851-27861(2019).

    [2] Marino R M, Davis W R. Jigsaw: a foliage-penetrating 3D imaging laser radar system[J]. Lincoln Laboratory Journal, 15, 23-36(2005).

    [3] Andersson P. Long-range three-dimensional imaging using range-gated laser radar images[J]. Optical Engineering, 45, 034301(2006).

    [4] Ni X X, Hu K. Multi-pulse train cross-correlation method in remote laser ranging[J]. Acta Optica Sinica, 32, 1112005(2012).

    [5] Degnan J J, Field C T. Moderate to high altitude, single photon sensitive, 3D imaging lidars[J]. Proceedings of SPIE, 9114, 91140H(2014).

    [6] Degnan J J. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements[J]. Journal of Geodynamics, 34, 503-549(2002).

    [7] Repasi E, Lutzmann P, Steinvall O et al. Mono- and bi-static SWIR range-gated imaging experiments for ground applications[J]. Proceedings of SPIE, 7114, 71140D(2008).

    [8] Mao D D, McGarry J F, Mazarico E et al. The laser ranging experiment of the Lunar Reconnaissance Orbiter: five years of operations and data analysis[J]. Icarus, 283, 55-69(2017).

    [9] Vaidyanathan M, Blask S, Higgins T et al. Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with photon-counting sensitivity for foliage penetration[J]. Proceedings of SPIE, 6550, 65500N(2007).

    [10] Clifton W E, Steele B, Nelson G et al. Medium altitude airborne Geiger-mode mapping LIDAR system[J]. Proceedings of SPIE, 9465, 946506(2015).

    [11] Cao J, Hao Q, Zhang F H et al. Research progress of APD three-dimensional imaging lidar[J]. Infrared and Laser Engineering, 49, 20190549(2020).

    [12] Bu Y M, Du X P, Zeng Z Y et al. Research progress and trend analysis of non-scanning laser 3D imaging radar[J]. Chinese Optics, 11, 711-727(2018).

    [13] Markus T, Neumann T, Martino A et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).

    [14] Abbot R I, Shelus P J, Mulholland J D et al. Laser observations of the Moon: identification and construction of normal points for 1969-1971[J]. The Astronomical Journal, 78, 784(1973).

    [15] Buller G S, Collins R J. Single-photon generation and detection[J]. Measurement Science and Technology, 21, 012002(2010).

    [16] Shin D, Shapiro J H, Goyal V K. Single-photon depth imaging using a union-of-subspaces model[J]. IEEE Signal Processing Letters, 22, 2254-2258(2015).

    [17] Shin D, Xu F H, Wong F N C et al. Computational multi-depth single-photon imaging[J]. Optics Express, 24, 1873-1888(2016).

    [18] Chen S M, Hao W, Su X Q et al. Research progress on photon counting imaging algorithms[J]. Laser & Optoelectronics Progress, 58, 1811010(2021).

    [19] Dong W S, Shi G M, Li X et al. Compressive sensing via nonlocal low-rank regularization[J]. IEEE Transactions on Image Processing, 23, 3618-3632(2014).

    [20] Kirmani A, Venkatraman D, Shin D et al. First-photon imaging[J]. Science, 343, 58-61(2014).

    [21] Gariepy G, Krstajić N, Henderson R et al. Single-photon sensitive light-in-fight imaging[J]. Nature Communications, 6, 6021(2015).

    [22] Shrestha K Y, Slatton K C, Carter W E et al. Performance metrics for single-photon laser ranging[J]. IEEE Geoscience and Remote Sensing Letters, 7, 338-342(2010).

    [23] Sun J F, Yan A M, Liu D A et al. Progress on long-range laser imaging ladar[J]. Laser & Optoelectronics Progress, 46, 49-54(2009).

    [24] Sjöqvist L, Henriksson M, Jonsson P et al. Time-of-flight range profiling using time-correlated single-photon counting[J]. Proceedings of SPIE, 6738, 67380N(2007).

    [25] Albota M A, Aull B F, Fouche D G et al. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays[J]. Lincoln Laboratory Journal, 13, 351-370(2002).

    [26] Becker W[M]. Advanced time-correlated single photon counting techniques(2005).

    [27] Lussana R, Villa F, Mora A D et al. Enhanced single-photon time-of-flight 3D ranging[J]. Optics Express, 23, 24962-24973(2015).

    [28] Tucker L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 31, 279-311(1966).

    [29] Ren X M, Connolly P W R, Halimi A et al. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor[J]. Optics Express, 26, 5541-5557(2018).

    [30] Wei C J, Yan R P, Li X D et al. Research progress of sub-nanosecond lasers for 3D imaging lidar[J]. Optics and Precision Engineering, 29, 1270-1280(2021).

    [31] Massa J S, Wallace A M, Buller G S et al. Laser depth measurement based on time-correlated single-photon counting[J]. Optics Letters, 22, 543-545(1997).

    [32] McCarthy A, Ren X M, Frera A D et al. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector[J]. Optics Express, 21, 22098-22113(2013).

    [33] Pawlikowska A M, Pilkington R M, Gordon K J et al. Long-range 3D single-photon imaging lidar system[J]. Proceedings of SPIE, 9250, 925007(2014).

    [34] Pawlikowska A M, Halimi A, Lamb R A et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 25, 11919-11931(2017).

    [35] Li Z P, Huang X, Cao Y et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 8, 1532-1540(2020).

    [36] Li Z P, Ye J T, Huang X et al. Single-photon imaging over 200 km[J]. Optica, 8, 344-349(2021).

    [37] Li Z P, Huang X, Jiang P Y et al. Super-resolution single-photon imaging at 8.2 kilometers[J]. Optics Express, 28, 4076-4087(2020).

    [38] Zhang L, Chitnis D, Chun H et al. A comparison of APD- and SPAD-based receivers for visible light communications[J]. Journal of Lightwave Technology, 36, 2435-2442(2018).

    [39] Lawrence D, Zheng Y, Upton R et al[EB/OL]. Recent advances in photon-counting, 3D imaging lidars. https://cddis.nasa.gov/lw18/docs/papers/Session12/13-04-22-Degnan.pdf

    [40] You L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 9, 2673-2692(2020).

    [41] Zhang X Y, Jia L, Zhu J et al. Comparison of laser ranging system based on SNSPD and SPAD detectors[J]. Journal of Infrared and Millimeter Waves, 37, 378-384(2018).

    [42] Pasquinelli K, Lussana R, Tisa S et al. Single-photon detectors modeling and selection criteria for high-background LiDAR[J]. IEEE Sensors Journal, 20, 7021-7032(2020).

    [43] Zhang S, Tao X, Feng Z J et al. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate[J]. Acta Physica Sinica, 65, 188501(2016).

    [44] Zhang L B, Kang L, Chen J et al. Development of superconductor nanowire single photon detector[J]. Journal of Nanjing University (Natural Sciences), 50, 254-261(2014).

    [45] Zhang B, Chen Q, Guan Y Q et al. Research progress of photon response mechanism of superconducting nanowire single photon detector[J]. Acta Physica Sinica, 70, 198501(2021).

    [46] Chen S J, You L X, Zhang W J et al. Dark counts of superconducting nanowire single-photon detector under illumination[J]. Optics Express, 23, 10786-10793(2015).

    [47] Zhang L B, Wan C, Gu M et al. Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors[J]. Science Bulletin, 60, 1434-1438(2015).

    [48] Chen Q, Ge R, Zhang L B et al. Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire[J]. Science Bulletin, 66, 965-968(2021).

    [49] Xue L, Li Z L, Zhang L B et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength[J]. Optics Letters, 41, 3848-3851(2016).

    [50] Zhang B, Guan Y Q, Xia L H et al. An all-day lidar for detecting soft targets over 100 km based on superconducting nanowire single-photon detectors[J]. Superconductor Science and Technology, 34, 034005(2021).

    [51] Chen G B, Wiede C, Kokozinski R. Data processing approaches on SPAD-based d-TOF LiDAR systems: a review[J]. IEEE Sensors Journal, 21, 5656-5667(2021).

    [52] Shin D, Xu F H, Venkatraman D et al. Photon-efficient imaging with a single-photon camera[J]. Nature Communications, 7, 12046(2016).

    [53] Shin D, Kirmani A, Goyal V K et al. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors[J]. IEEE Transactions on Computational Imaging, 1, 112-125(2015).

    [54] Sun M J, Yan S M, Wang S Y. Reconstruction algorithms for ghost imaging and single-pixel imaging[J]. Laser & Optoelectronics Progress, 59, 0200001(2022).

    [55] He W J, Sima B Y, Chen Y F et al. A correction method for range walk error in photon counting 3D imaging LIDAR[J]. Optics Communications, 308, 211-217(2013).

    [56] Zhai X L, Wu X Y, Sun Y W et al. Theory and approach of single-pixel imaging (Invited)[J]. Infrared and Laser Engineering, 50, 20211061(2021).

    [57] Shin D, Shapiro J H, Goyal V K. Performance analysis of low-flux least-squares single-pixel imaging[J]. IEEE Signal Processing Letters, 23, 1756-1760(2016).

    [58] Altmann Y, Ren X M, McCarthy A et al. Lidar waveform-based analysis of depth images constructed using sparse single-photon data[J]. IEEE Transactions on Image Processing, 25, 1935-1946(2016).

    [59] Kang Y, Li L F, Liu D W et al. Fast long-range photon counting depth imaging with sparse single-photon data[J]. IEEE Photonics Journal, 10, 7500710(2018).

    [60] Peng X, Zhao X Y, Li L J et al. First-photon imaging via a hybrid penalty[J]. Photonics Research, 8, 325-330(2020).

    [61] Rehain P, Sua Y M, Zhu S Y et al. Noise-tolerant single photon sensitive three-dimensional imager[J]. Nature Communications, 11, 921(2020).

    [62] Boyd S, Vandenberghe L, Faybusovich L. Convex optimization[J]. IEEE Transactions on Automatic Control, 51, 1859(2006).

    [63] Chen B, Yang J, Yang X et al. Effect of speckle noise on wavefront distortion correction in laser active imaging[J]. Chinese Journal of Lasers, 42, 1012002(2015).

    [64] Rapp J, Goyal V K. A few photons among many: unmixing signal and noise for photon-efficient active imaging[J]. IEEE Transactions on Computational Imaging, 3, 445-459(2017).

    [65] Cheng Y, Zhao X Y, Li L J et al. First-photon imaging with independent depth reconstruction[J]. APL Photonics, 7, 036103(2022).

    [66] Marino R M, Stephens T, Hatch R E et al. A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements[J]. Proceedings of SPIE, 5086, 1-15(2003).

    [67] McGill M, Markus T, Scott V S et al. The multiple altimeter beam experimental lidar (MABEL): an airborne simulator for the ICESat-2 mission[J]. Journal of Atmospheric and Oceanic Technology, 30, 345-352(2013).

    [68] McCarthy A, Krichel N J, Gemmell N R et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection[J]. Optics Express, 21, 8904-8915(2013).

    [69] Warburton R E, McCarthy A, Wallace A M et al. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength[J]. Optics Letters, 32, 2266-2268(2007).

    [70] Guan Y Q, Li H C, Xue L et al. Lidar with superconducting nanowire single-photon detectors: recent advances and developments[J]. Optics and Lasers in Engineering, 156, 107102(2022).

    [71] Xia H Y, Shentu G L, Shangguan M J et al. Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector[J]. Optics Letters, 40, 1579-1582(2015).

    [72] Degnan J J. Satellite laser ranging: current status and future prospects[J]. IEEE Transactions on Geoscience and Remote Sensing, GE-23, 398-413(1985).

    [73] Zappa F, Ripamonti G, Lacaita A et al[EB/OL]. Tracking capabilities of SPADs for laser ranging. https://ntrs.nasa.gov/citations/19940011097

    [74] Courde C, Torre J M, Samain E et al. Lunar laser ranging in infrared at the Grasse laser station[J]. Astronomy & Astrophysics, 602, A90(2017).

    [75] Rapp J, Tachella J, Altmann Y et al. Advances in single-photon lidar for autonomous vehicles: working principles, challenges, and recent advances[J]. IEEE Signal Processing Magazine, 37, 62-71(2020).

    [76] Halterman R, Bruch M. Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection[J]. Proceedings of SPIE, 7692, 123-130(2010).

    [77] Wang H, Wang B, Liu B B et al. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle[J]. Robotics and Autonomous Systems, 88, 71-78(2017).

    [78] Belkin I, Abramenko A, Yudin D. Real-time lidar-based localization of mobile ground robot[J]. Procedia Computer Science, 186, 440-448(2021).

    [79] Behroozpour B, Sandborn P A M, Wu M C et al. Lidar system architectures and circuits[J]. IEEE Communications Magazine, 55, 135-142(2017).

    [80] Xie X, Bai L, Huang X M. Real-time LiDAR point cloud semantic segmentation for autonomous driving[J]. Electronics, 11, 11(2021).

    [81] Lindell D B, O’Toole M, Wetzstein G. Towards transient imaging at interactive rates with single-photon detectors[C](2018).

    [82] Chan S, Warburton R E, Gariepy G et al. Fast tracking of hidden objects with single-pixel detectors[J]. Electronics Letters, 53, 1005-1008(2017).

    [83] Du P F, Zhang F, Li Z P et al. Single-photon detection approach for autonomous vehicles sensing[J]. IEEE Transactions on Vehicular Technology, 69, 6067-6078(2020).

    Hanyi Zhang, Xinyu Zhao, Yicheng Zhang, Labao Zhang, Mingjie Sun. Review of Advances in Single-Photon LiDAR[J]. Chinese Journal of Lasers, 2022, 49(19): 1910003
    Download Citation