• Frontiers of Optoelectronics
  • Vol. 14, Issue 2, 134 (2021)
Yingcheng QIU1, Shiwei TANG1,*, Tong CAI2, Hexiu XU2, and Fei DING3
Author Affiliations
  • 1School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
  • 2Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
  • 3Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
  • show less
    DOI: 10.1007/s12200-021-1220-6 Cite this Article
    Yingcheng QIU, Shiwei TANG, Tong CAI, Hexiu XU, Fei DING. Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces[J]. Frontiers of Optoelectronics, 2021, 14(2): 134 Copy Citation Text show less
    References

    [1] Cai T,Wang G, Tang S, Xu H, Duan J, Guo H, Guan F, Sun S, He Q, Zhou L. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Physical Review Applied, 2017, 8(3): 034033

    [2] Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L. Highperformance bifunctional metasurfaces in transmission and reflection geometries. Advanced Optical Materials, 2017, 5(2): 1600506

    [3] Díaz-Rubio A, Asadchy V S, Elsakka A, Tretyakov S A. From the generalized reflection law to the realization of perfect anomalous reflectors. Science Advances, 2017, 3(8): e1602714

    [4] Khorasaninejad M, ChenWT, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194

    [5] Moreno G, Yakovlev A B, Bernety H M,Werner D H, Xin H, Monti A, Bilotti F, Alu A. Wideband elliptical metasurface cloaks in printed antenna technology. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3512–3525

    [6] Sima B, Chen K, Luo X, Zhao J, Feng Y. Combining frequencyselective scattering and specular reflection through phase-dispersion tailoring of a metasurface. Physical Review Applied, 2018, 10(6): 064043

    [7] Liu K, Guo W, Wang G, Li H, Liu G. A novel broadband bifunctional metasurface for vortex generation and simultaneous RCS reduction. IEEE Access: Practical Innovations, Open Solutions, 2018, 6: 63999–64007

    [8] Zhang Y, Liu W, Gao J, Yang X. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Advanced Optical Materials, 2018, 6(4): 1701228

    [9] ai T, Wang G, Zhang X, Liang J, Zhuang Y, Liu D, Xu H. Ultrathin polarization beam splitter using 2-D transmissive phase gradient metasurface. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5629–5636

    [10] Pfeiffer C, Zhang C, Ray V, Guo L J, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Physical Review Letters, 2014, 113(2): 023902

    [11] Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427

    [12] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    [13] Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W. High efficiency ultrathin transmissive metasurfaces. Advanced Optical Materials, 2019, 7(11): 1801628

    [14] Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 2017, 358(6365): 896–901

    [15] Ding G, Chen K, Luo X, Zhao J, Jiang T, Feng Y. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion. Physical Review Applied, 2019, 11(4): 044043

    [16] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 2013, 339(6125): 1232009

    [17] Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150

    [18] Lin D, Fan P, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302

    [19] Ding F, Deshpande R, Bozhevolnyi S I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light, Science & Applications, 2018, 7(4): 17178

    [20] Boroviks S, Deshpande R A, Mortensen N A, Bozhevolnyi S I. Multifunctional metamirror: polarization splitting and focusing. ACS Photonics, 2018, 5(5): 1648–1653

    [21] Xu H X, Tang S, Ling X, Luo W, Zhou L. Flexible control of highlydirective emissions based on bifunctional metasurfaces with low polarization cross-talking. Annalen der Physik, 2017, 529(5): 1700045

    [22] Xu H, Tang S, Wang G, Cai T, Huang W, He Q, Sun S, Zhou L. Multifunctional microstrip array combining a linear polarizer and focusing metasurface. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3676–3682

    [23] Liu S, Jun Cui T, Noor A, Tao Z, Zhang H C, Bai G, Yang Y, Yang Zhou X. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light, Science & Applications, 2018, 7(5): 18008

    [24] Huang L, Mühlenbernd H, Li X, Song X, Bai B, Wang Y, Zentgraf T. Broadband hybrid holographic multiplexing with geometric metasurfaces. Advanced Materials, 2015, 27(41): 6444–6449

    [25] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901

    [26] Xiao S, Zhong F, Liu H, Zhu S, Li J. Flexible coherent control of plasmonic spin-Hall effect. Nature Communications, 2015, 6(1): 8360

    [27] Choudhury S, Guler U, Shaltout A, Shalaev V M, Kildishev A V, Boltasseva A. Pancharatnam–Berry phase manipulating metasurface for visible color hologram based on low loss silver thin film. Advanced Optical Materials, 2017, 5(10): 1700196

    [28] Wang S,Wang X, Kan Q, Ye J, Feng S, Sun W, Han P, Qu S, Zhang Y. Spin-selected focusing and imaging based on metasurface lens. Optics Express, 2015, 23(20): 26434–26441

    [29] Maguid E, Yulevich I, Yannai M, Kleiner V, Brongersma M L, Hasman E. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light, Science & Applications, 2017, 6(8): e17027

    [30] Wen D, Chen S, Yue F, Chan K, Chen M, Ardron M, Li K F,Wong P W H, Cheah K W, Pun E Y B, Li G, Zhang S, Chen X. Metasurface device with helicity-dependent functionality. Advanced Optical Materials, 2016, 4(2): 321–327

    [31] Luo W, Xiao S, He Q, Sun S, Zhou L. Photonic spin Hall effect with nearly 100% efficiency. Advanced Optical Materials, 2015, 3(8): 1102–1108

    [32] Khorasaninejad M, Crozier K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nature Communications, 2014, 5(1): 5386

    [33] Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light, Science & Applications, 2013, 2(3): e70

    [34] Jiang Q, Bao Y, Lin F, Zhu X, Zhang S, Fang Z. Spin-controlled integrated near-and far-field optical launcher. Advanced Functional Materials, 2018, 28(8): 1705503

    [35] Jin J, Li X, Guo Y, Pu M, Gao P, Ma X, Luo X. Polarizationcontrolled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures. Nanoscale, 2019, 11(9): 3952–3957

    [36] Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, Hasman E. Photonic spin-controlled multi-functional sharedaperture antenna array. Science, 2016, 352(6290): 1202–1206

    [37] Veksler D, Maguid E, Shitrit N, Ozeri D, Kleiner V, Hasman E. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photonics, 2015, 2(5): 661–667

    [38] Mehmood M Q, Mei S, Hussain S, Huang K, Siew S Y, Zhang L, Zhang T, Ling X, Liu H, Teng J, Danner A, Zhang S, Qiu C W. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Advanced Materials, 2016, 28(13): 2533– 2539

    [39] Ding F, Wang Z, He S, Shalaev V M, Kildishev A V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano, 2015, 9(4): 4111–4119

    [40] Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T, Lezec H J. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55

    [41] Yuan Y, Zhang K, Ratni B, Song Q, Ding X, Wu Q, Burokur S N, Genevet P. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nature Communications, 2020, 11(1): 4186

    [42] Tian S, Guo H, Hu J, Zhuang S. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Optics Express, 2019, 27(2): 680–688

    [43] Jin R, Tang L, Li J, Wang J, Wang Q, Liu Y, Dong Z. Experimental demonstration of multidimensional and multi-functional metalenses based on photonic spin hall effect. ACS Photonics, 2020, 7(2): 512– 518

    [44] Li X, Li S,Wang G, Lei Y, Hong Y, Zhang L, Zeng C,Wang L, Sun Q, Zhang W. Tunable doublet lens based on dielectric metasurface using phase-change material. Modern Physics Letters B, 2020, 34 (28): 2050313

    [45] Xu H, Han L, Li Y, Sun Y, Zhao J, Zhang S, Qiu C. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control. ACS Photonics, 2019, 6(1): 211–220

    [46] Fan Q, Zhu W, Liang Y, Huo P, Zhang C, Agrawal A, Huang K, Luo X, Lu Y, Qiu C, Lezec H J, Xu T. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Letters, 2019, 19(2): 1158–1165

    [47] Pancharatnam S. Generalized theory of interference and its applications. In: Proceedings of the Indian Academy of Sciences- Section A. Beilin: Springer, 1956, 398–417

    [48] Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1802, 1984(392): 45–57

    [49] Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141– 1143

    [50] Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Physical Review A, 2010, 82(5): 053811

    [51] Armitage N P. Constraints on Jones transmission matrices from time-reversal invariance and discrete spatial symmetries. Physical Review. B, 2014, 90(3): 035135

    [52] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943

    [53] Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 2012, 12(11): 5750– 5755

    [54] Xu H, Ma S, Ling X, Zhang X, Tang S, Cai T, Sun S, He Q, Zhou L. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photonics, 2018, 5(5): 1691–1702

    [55] Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zentgraf T, Zhang S. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens. Advanced Optical Materials, 2013, 1(7): 517–521

    [56] Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X. Multispectral optical metasurfaces enabled by achromatic phase transition. Scientific Reports, 2015, 5(1): 15781

    [57] Yue F,Wen D, Zhang C, Gerardot B D,Wang W, Zhang S, Chen X. Multichannel polarization-controllable superpositions of orbital angular momentum states. Advanced Materials, 2017, 29(15): 1603838

    [58] Chen P, Ge S, Duan W, Wei B, Cui G, Hu W, Lu Y. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding. ACS Photonics, 2017, 4(6): 1333–1338

    [59] Wen D, Yue F, Liu W, Chen S, Chen X. Geometric metasurfaces for ultrathin optical devices. Advanced Optical Materials, 2018, 6(17): 1800348

    [60] Gao H, Li Y, Chen L, Jin J, Pu M, Li X, Gao P, Wang C, Luo X, Hong M. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale, 2018, 10(2): 666–671

    [61] Li Y, Li X, Chen L, Pu M, Jin J, Hong M, Luo X. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Advanced Optical Materials, 2017, 5(2): 1600502

    [62] Yang K, Pu M, Li X, Ma X, Luo J, Gao H, Luo X. Wavelengthselective orbital angular momentum generation based on a plasmonic metasurface. Nanoscale, 2016, 8(24): 12267–12271

    [63] Ma X, Pu M, Li X, Huang C,Wang Y, Pan W, Zhao B, Cui J,Wang C, Zhao Z, Luo X. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, 5(1): 10365

    [64] Ren H, Li X, Zhang Q, Gu M. On-chip noninterference angular momentum multiplexing of broadband light. Science, 2016, 352 (6287): 805–809

    [65] Lin J, Mueller J P, Wang Q, Yuan G, Antoniou N, Yuan X C, Capasso F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 2013, 340(6130): 331–334

    [66] Duan J, Guo H, Dong S, Cai T, Luo W, Liang Z, He Q, Zhou L, Sun S. High-efficiency chirality-modulated spoof surface plasmon metacoupler. Scientific Reports, 2017, 7(1): 1354

    [67] Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042

    [68] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312

    [69] Luo W, Sun S, Xu H, He Q, Zhou L. Transmissive ultrathin Pancharatnam–Berry metasurfaces with nearly 100% efficiency. Physical Review Applied, 2017, 7(4): 044033

    [70] Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica, 2015, 2 (8): 716–723

    [71] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6(1): 8241

    [72] Zhang C, Yue F, Wen D, Chen M, Zhang Z, Wang W, Chen X. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 2017, 4(8): 1906–1912

    [73] Zhang Z, Wen D, Zhang C, Chen M, Wang W, Chen S, Chen X. Multifunctional light sword metasurface lens. ACS Photonics, 2018, 5(5): 1794–1799

    [74] Chen X, Chen M, Mehmood M Q, Wen D, Yue F, Qiu C W, Zhang S. Longitudinal multifoci metalens for circularly polarized light. Advanced Optical Materials, 2015, 3(9): 1201–1206

    [75] Xu H X, Hu G, Jiang M, Tang S, Wang Y, Wang C, Huang Y, Ling X, Liu H, Zhou J. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface. Advanced Materials Technologies, 2020, 5(1): 1900710

    [76] Guo W L, Wang G M, Luo X Y, Hou H S, Chen K, Feng Y. Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring. Annalen der Physik, 2020, 532 (3): 1900472

    [77] Zi J, Xu Q, Wang Q, Tian C, Li Y, Zhang X, Han J, Zhang W. Antireflection-assisted all-dielectric terahertz metamaterial polarization converter. Applied Physics Letters, 2018, 113(10): 101104

    [78] Xu J, Li R, Qin J, Wang S, Han T. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Optics Express, 2018, 26(16): 20913–20919

    [79] Hu S, Yang S, Liu Z, Li J, Gu C. Broadband cross-polarization conversion by symmetry-breaking ultrathin metasurfaces. Applied Physics Letters, 2017, 111(24): 241108

    [80] Borgese M, Costa F, Genovesi S, Monorchio A, Manara G. Optimal design of miniaturized reflecting metasurfaces for ultra-wideband and angularly stable polarization conversion. Scientific Reports, 2018, 8(1): 7651

    [81] Wu H, Liu S, Wan X, Zhang L, Wang D, Li L, Cui T J. Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Advancement of Science, 2017, 4(9): 1700098

    [82] Guan C, Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Jin M, Wu Q. Coding Huygens’ metasurface for enhanced quality holographic imaging. Optics Express, 2019, 27(5): 7108–7119

    [83] Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S,Wan X, Tian Z, TangWX, Cheng Q, Han J G, ZhangWL, Cui T J. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Advanced Optical Materials, 2016, 4(12): 1965–1973

    [84] Wang D, Liu T, Zhou Y, Zheng X, Sun S, He Q, Zhou L. Highefficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics, 2020, 10(1): 685–695

    [85] Li S,Wang Z, Dong S, Yi S, Guan F, Chen Y, Guo H, He Q, Zhou L, Sun S. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics, 2020, 9(10): 3473–3481

    [86] Wang Z, Li S, Zhang X, Feng X, Wang Q, Han J, He Q, Zhang W, Sun S, Zhou L. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Advanced Science, 2020, 7(19): 2000982

    [87] Yin L Z, Huang T J, Han F Y, Liu J Y, Wang D, Liu P K. Highefficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering. Optics Express, 2019, 27 (13): 18928–18939

    [88] Meng C, Tang S, Ding F, Bozhevolnyi S I. Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering. ACS Photonics, 2020, 7(7): 1849–1856

    [89] Cai T,Wang GM, Xu H X, Tang SW, Li H, Liang J G, Zhuang Y Q. Bifunctional Pancharatnam–Berry metasurface with high-efficiency helicity-dependent transmissions and reflections. Annalen der Physik, 2018, 530(1): 1700321

    [90] Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Physical Review Letters, 2006, 97(16): 167401

    [91] Liu J, Li Z, Liu W, Cheng H, Chen S, Tian J. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces. Advanced Optical Materials, 2016, 4(12): 2028–2034

    [92] Ding G, Chen K, Qian G, Zhao J, Jiang T, Feng Y, Wang Z. Independent energy allocation of dual-helical multi-beams with spin-selective transmissive metasurface. Advanced Optical Materials, 2020, 8(16): 2000342

    [93] Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Physical Review Letters, 2020, 125(26): 267402

    [94] Chen C, Gao S, Song W, Li H, Zhu S N, Li T. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Letters, 2021, 21(4): 1815–1821

    [95] Xu Y, Zhang H, Li Q, Zhang X, Xu Q, Zhang W, Hu C, Zhang X, Han J, Zhang W. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 2020, 9(10): 3393–3402

    [96] Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798 === Yingcheng Qiu received his bachelor’s degree from Wenzheng College of Soochow University, China, in 2019. Since 2019, he has been a master student in the School of Physics Science and Technology at Ningbo University, China. His fields of interest include metamaterials and metasurfaces.

    Yingcheng QIU, Shiwei TANG, Tong CAI, Hexiu XU, Fei DING. Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces[J]. Frontiers of Optoelectronics, 2021, 14(2): 134
    Download Citation