• High Power Laser and Particle Beams
  • Vol. 35, Issue 4, 041008 (2023)
Jinhu Long1, Rongtao Su1、2、3、*, Hongxiang Chang1, Tianyue Hou1, Qi Chang1, Min Jiang1, Jiayi Zhang1, Yanxing Ma1、2、3, Pengfei Ma1、2、3, and Pu Zhou1、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.11884/HPLPB202335.220258 Cite this Article
    Jinhu Long, Rongtao Su, Hongxiang Chang, Tianyue Hou, Qi Chang, Min Jiang, Jiayi Zhang, Yanxing Ma, Pengfei Ma, Pu Zhou. Coherent combining of fiber laser based on internal phase locking in spatial structure[J]. High Power Laser and Particle Beams, 2023, 35(4): 041008 Copy Citation Text show less
    References

    [1] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [3] Lai Wenchang, Ma Pengfei, Xiao Hu, . High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 121001(2020).

    [4] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, e54(2019).

    [5] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811W output power[J]. Optics Letters, 39, 666-669(2014).

    [6] O''Conn M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]Conference on Lasers ElectroOpticsInternational Quantum Electronics Conference. 2009.

    [7] Fang Qiang, Li Jinhui, Shi Wei, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 9, 1506107(2017).

    [8] Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 14, 102479(2019).

    [9] Wang Y, Kitahara R, Kiyoyama W, et al. 8kW singlestage allfiber Ybdoped fiber laser with a BPP of 0.50 mmmrad[C]Proceedings of SPIE 11260, Fiber Lasers XVII: Technology Systems. 2020: 1126022.

    [10] Du Shanshan, Qi Tiancheng, Li Dan, et al. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS[J]. IEEE Photonics Technology Letters, 34, 721-724(2022).

    [11] Wu Hanshuo, Li Ruixian, Xiao Hu, et al. First demonstration of a bidirectional tandem-pumped high-brightness 8 kW level confined-doped fiber amplifier[J]. Journal of Lightwave Technology, 40, 5673-5681(2022).

    [12] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [13] Liu Wei, Ma Pengfei, Lv Haibin, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 24, 26715-26721(2016).

    [14] Stihler C, Jauregui C, Kholaif S E, et al. Intensity noise as a driver for transverse mode instability in fiber amplifiers[J]. PhotoniX, 1, 8(2020).

    [15] Huang Zhimeng, Shu Qiang, Tao Rumao, et al. >5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).

    [16] Ren Shuai, Lai Wenchang, Wang Guangjian, et al. Experimental study on the impact of signal bandwidth on the transverse mode instability threshold of fiber amplifiers[J]. Optics Express, 30, 7845-7853(2022).

    [17] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-577(2005).

    [18] Xue Yuhao, He Bin, Zhou Jun, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 28, 054212(2011).

    [19] Brignon A. Coherent laser beam combining[M]. Weinheim: WileyVCH, 2013.

    [20] Zhou Jun, He Bing, Xue Yuhao, . Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 31, 0900129(2011).

    [21] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. SCIENCE CHINA Information Sciences, 62, 41301(2019).

    [22] Niu Xiaxia, Liu Meizhong, Zhang Haibo, et al. Coherent beam combining of a nine-fiber laser array using an all-optical ring cavity feedback loop based on diffractive optical element[J]. Optical Engineering, 59, 116108(2020).

    [23] Zhou Pu, Su Rongtao, Ma Yanxing, . Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).

    [24] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 19, 17053-17058(2011).

    [25] Su Rongtao, Zhou Pu, Wang Xiaolin, . Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 26, 110101(2014).

    [26] Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 23, 12407-12413(2015).

    [27] Huang Zhimeng, Tang Xuan, Luo Yongquan, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Review of Scientific Instruments, 87, 033109(2016).

    [28] Kabeya D, Kermène V, Fabert M, et al. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop[J]. Optics Express, 25, 13816-13821(2017).

    [29] Chang Hongxiang, Xi Jiachao, Su Rongtao, et al. Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm[J]. Chinese Optics Letters, 18, 101403(2020).

    [30] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 28, 20152-20161(2020).

    [31] Chang Hongxiang, Chang Qi, Xi Jiachao, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 8, 1943-1948(2020).

    [32] Shpakovych M, Maulion G, Kermene V, et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 29, 12307-12318(2021).

    [33] Chang Qi, Hou Tianyue, Deng Yu, . Coherent combined of 400 scale lasers based on two-dimensional light field calculation[J]. Infrared and Laser Engineering, 51, 20220276(2022).

    [34] Ma Yanxing, Wang Xiaolin, Leng Jingyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 36, 951-953(2011).

    [35] Fles A, Shay T M, Lu C A, et al. Coherent beam combining of fiber amplifiers in a kW regime[C]CLEO: 2011—Laser Applications to Photonic Applications. 2011.

    [36] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011).

    [37] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0901008(2014).

    [38] Flores A, Dajani I, Holten R H, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 55, 096101(2016).

    [39] Liu Zejin, Zhou Pu, Ma Pengfei, . 4 channels of high-power narrow linewidth linear polarization fiber amplifiers coherent polarization combining to achieve 5kW high-brightness laser output[J]. Chinese Journal of Lasers, 44, 0415004(2017).

    [40] Ma Pengfei, Chang Hongaxing, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 140, 107016(2021).

    [41] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam f material processing[C]Proceedings of SPIE 11260, Fiber Lasers XVII: Technology Systems. 2020: 1126021.

    [42] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).

    [43] Wu Jian, Ma Yanxing, Ma Pengfei, . Coherently combined fiber laser with 20 kW high power output[J]. Infrared and Laser Engineering, 50, 20210621(2021).

    [44] Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 460-472(2007).

    [45] Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Optics Express, 18, 27827-27835(2010).

    [46] Antier M, Bourderionnet J, Larat C, et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 090150(2014).

    [47] Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7  km[J]. Optics Letters, 41, 840-843(2016).

    [48] Geng Chao, Luo Wen, Tan Yi, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Optics Express, 21, 25045-25055(2013).

    [49] Fles A, Ehrehreich T, Holten R, et al. MultikW coherent combining of fiber lasers seeded with pseudo rom phase modulated light[C]Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, Applications. 2016: 97281Y.

    [50] Beresnev L A, Motes R A, Townes K J, et al. Design of a noncooled fiber collimator for compact, high-efficiency fiber laser arrays[J]. Applied Optics, 56, B169-B178(2017).

    [51] Boju A, Maulion G, Saucourt J, et al. Small footprint phase locking system for a large tiled aperture laser array[J]. Optics Express, 29, 11445-11452(2021).

    [52] Long Jinhu, Chang Hongxiang, Zhang Yuqiu, et al. Compact internal sensing phase locking system for coherent combining of fiber laser array[J]. Optics & Laser Technology, 148, 107775(2022).

    [53] Zhou Pu. Study on the coherent beam combining of fiber laser[D]. Changsha: National University of Defense Technology, 2010

    [54] Su Rongtao, Zhang Zhixing, Zhou Pu, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photonics Technology Letters, 28, 2585-2588(2016).

    [55] Su Rongtao, Long Jinhu, Ma Yanxing, et al. The coherently beams laser array its control method: 202110650427.6[P]. 20210610

    [56] Bowman D J, King M J, Sutton A J, et al. Internally sensed optical phased array[J]. Optics Letters, 38, 1137-1139(2013).

    [57] Roberts L E, Ward R L, Sutton A J, et al. Coherent beam combining using a 2D internally sensed optical phased array[J]. Applied Optics, 53, 4881-4885(2014).

    [58] Roberts L E, Ward R L, Smith C, et al. Coherent beam combining using an internally sensed optical phased array of frequency-offset phase locked lasers[J]. Photonics, 7, 118(2020).

    [59] Yang Yan, Geng Chao, Li Feng, et al. Multi-aperture all-fiber active coherent beam combining for free-space optical communication receivers[J]. Optics Express, 25, 27519-27532(2017).

    [60] Li Feng, Geng Chao, Li Xinyang, . Phase-locking control in all fiber link based on fiber coupler[J]. Opto-Electronic Engineering, 44, 602-609(2017).

    [61] Long Jinhu, Jin Kaikai, Hou Tianyue, et al. Wavefront aberration mitigation with adaptive distributed aperture fiber array lasers[C]Proceedings of SPIE 11890, Advanced Lasers, HighPower Lasers, Applications XII. 2021: 1189008.

    [62] Su Rongtao, Long Jinhu, Ma Yanxing, et al. The system method of piston phase control: 110729628B[P]. 20210525.

    [63] Primmerman C A, Price T R, Humphreys R A, et al. Atmospheric-compensation experiments in strong-scintillation conditions[J]. Applied Optics, 34, 2081-2088(1995).

    [64] Lukin V P. Limitations of adaptive control efficiency due to singular points in the wavefront of a laser beam[J]. Applied Optics, 51, C176-C183(2012).

    [65] Geng Chao, Li Xinyang, Zhang Xiaojun, . Experimental investigation on coherent beam combination of a three-element fiber array based on target-in-the-loop technique[J]. Acta Physica Sinica, 61, 034204(2012).

    [66] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 36, 4455-4457(2011).

    [67] Geng Chao, Li Feng, Zuo Jing, et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 45, 1906-1909(2020).

    [68] Vontsov M A, Weyrauch T. Laser beam engineering atmospheric turbulence effects mitigation with coherent fiber array systems[C]Propagation Through acterization of Atmospheric Oceanic Phenomena. 2016.

    [69] Zhi Dong, Ma Yanxing, Ma Pengfei, . Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 48, 1005007(2019).

    [70] Zuo Jing, Zou Fan, Zhou Xin, et al. Coherent combining of a large-scale fiber laser array over 2.1 km in turbulence based on a beam conformal projection system[J]. Optics Letters, 47, 365-368(2022).

    [71] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [72] Dennis M R, O’Holleran K, Padgett M J. Singular optics: optical vortices and polarization singularities[J]. Progress in Optics, 53, 293-363(2009).

    [73] Shen Yijie, Wang Xiejiao, Xie Zhenwei, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [74] Wang Jian, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [75] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [76] Lachinova S L, Vorontsov M A. Exotic laser beam engineering with coherent fiber-array systems[J]. Journal of Optics, 15, 105501(2013).

    [77] Chu Xiuxiang, Sun Quan, Wang Jing, et al. Generating a Bessel-Gaussian beam for the application in optical engineering[J]. Scientific Reports, 5, 18665(2016).

    [78] Xie Guodong, Liu Cong, Li Long, et al. Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients[J]. Optics Letters, 42, 991-994(2017).

    [79] Aksenov V P, Dudorov V V, Filimonov G A, et al. Vortex beams with zero orbital angular momentum and non-zero topological charge[J]. Optics & Laser Technology, 104, 159-163(2018).

    [80] Zhi Dong, Hou Tianyue, Ma Pengfei, et al. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology[J]. High Power Laser Science and Engineering, 7, e33(2019).

    [81] Yu Tao, Xia Hui, Xie Wenke, et al. Orbital angular momentum mode detection of the combined vortex beam generated by coherent combining technology[J]. Optics Express, 28, 35795-35806(2020).

    [82] Hou Tianyue, Chang Qi, Yu Tao, et al. Switching the orbital angular momentum state of light with mode sorting assisted coherent laser array system[J]. Optics Express, 29, 13428-13440(2021).

    [83] Veinhard M, Bellanger S, Daniault L, et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser[J]. Optics Letters, 46, 25-28(2021).

    [84] Adamov E V, Aksenov V P, Dudorov V V, et al. Controlling the spatial structure of vector beams synthesized by a fiber laser array[J]. Optics & Laser Technology, 154, 108351(2022).

    [85] Long Jinhu, Hou Tianyue, Chang Qi, et al. Generation of optical vortex lattices by a coherent beam combining system[J]. Optics Letters, 46, 3665-3668(2021).

    [86] Basistiy I V, Bazhenov V Y, Soskin M S, et al. Optics of light beams with screw dislocations[J]. Optics Communications, 103, 422-428(1993).

    [87] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161-204(2011).

    [88] Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 7, e59(2019).

    [89] Liu Renqi, Peng Chun, Liang Xiaoyan, et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 18, 041402(2020).

    [90] Wang Dan, Du Qiang, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 29, 5694-5709(2021).

    [91] Mirigaldi A, Carbone M, Perrone G. Non-uniform adaptive angular spectrum method and its application to neural network assisted coherent beam combining[J]. Optics Express, 29, 13269-13287(2021).

    Jinhu Long, Rongtao Su, Hongxiang Chang, Tianyue Hou, Qi Chang, Min Jiang, Jiayi Zhang, Yanxing Ma, Pengfei Ma, Pu Zhou. Coherent combining of fiber laser based on internal phase locking in spatial structure[J]. High Power Laser and Particle Beams, 2023, 35(4): 041008
    Download Citation