[1] WANG W H. Essence and characteristics of amorphous substances[J]. Progress in Physics, 2013, 33(5): 177-351 (in Chinese).
[2] LI J Z, CHEN X X, SHENG L G. Structural relaxation in glass[J]. Journal of the Chinese Ceramic Society, 1983, 11(3): 342-351 (in Chinese).
[3] ZHOU Y H, GU Z A. Study on hydroxyl in quartz glass and quartz raw materials[J]. Journal of the Chinese Ceramic Society, 2002, 30(3): 357-361 (in Chinese).
[4] FANDERLIK I. Silica glass and its application[M]. Prague: Publishers of Technical Literature, 1991: 271.
[5] WEBB S. Silicate melts: relaxation, rheology, and the glass transition[J]. Reviews of Geophysics, 1997, 35(2): 191-218.
[6] YU H B, SAMWER K, WU Y, et al. Correlation between β relaxation and self-diffusion of the smallest constituting atoms in metallic glasses[J]. Physical Review Letters, 2012, 109(9): 095508.
[7] ZHU F, NGUYEN H K, SONG S X, et al. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass[J]. Nature Communications, 2016, 7: 11516.
[8] WANG Q, LIU J J, YE Y F, et al. Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses[J]. Materials Today, 2017, 20(6): 293-300.
[9] DUAN J J, ZHAN W T, GHONGNIAN H, et al. The structural relaxation in vanadium phosphate glass studied by DMA[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(2): 94-100 (in Chinese).
[10] BERTHIER L, BIROLI G. Theoretical perspective on the glass transition and amorphous materials[J]. Reviews of Modern Physics, 2011, 83(2): 587-645.
[11] HU Y C. Study on structure and kinetics of supercooled liquid and metallic glass[D]. Beijing: Institute of Physics Chinese Academy of Sciences, 2018 (in Chinese).
[12] WANG L M, WANG B T, CHEN Z M, et al. Nonlinear dynamics of structural relaxation in molecular amorphous systems[J]. Journal of Yanshan University, 2020, 44(3): 238-246 (in Chinese).
[13] FAN H J, WANG J, ZHANG H. Applications of dynamic mechanical thermal analysis in polymers and composite materials[J]. Chemistry and Adhesion, 2017, 39(2): 132-134 (in Chinese).
[14] TOOL A Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range
[15] AGARWAL A, DAVIS K M, TOMOZAWA M. A simple IR spectroscopic method for determining fictive temperature of silica glasses[J]. Journal of Non-Crystalline Solids, 1995, 185(1/2): 191-198.
[16] KOIKE A, RYU S R, TOMOZAWA M. Adequacy test of the fictive temperatures of silica glasses determined by IR spectroscopy[J]. Journal of Non-Crystalline Solids, 2005, 351(52/53/54): 3797-3803.
[17] HAKEN U, HUMBACH O, ORTNER S, et al. Refractive index of silica glass: influence of fictive temperature[J]. Journal of Non-Crystalline Solids, 2000, 265(1/2): 9-18.
[18] AGARWAL A, TOMOZAWA M. Correlation of silica glass properties with the infrared spectra[J]. Journal of Non-Crystalline Solids, 1997, 209(1/2): 166-174.
[19] BRNING R, COTTRELL D. X-ray and neutron scattering observations of structural relaxation of vitreous silica[J]. Journal of Non-Crystalline Solids, 2003, 325(1/2/3): 6-15.
[20] SAKAGUCHI S, TODOROKI S, MURATA T. Rayleigh scattering in silica glass with heat treatment[J]. Journal of Non-Crystalline Solids, 1997, 220(2/3): 178-186.
[21] CHAMPAGNON B, CHEMARIN C, DUVAL E, et al. Glass structure and light scattering[J]. Journal of Non-Crystalline Solids, 2000, 274(1/2/3): 81-86.
[22] LIANG X J, YANG X Y, XIANG W D. Study on the structural relaxation of Na2O-B2O3SiO2 glasses prepared by sol-gel method[J]. Rare Metal Materials and Engineering, 2008, 37(supplement 2): 540-542 (in Chinese).
[23] ZHANG X Y, YUAN Z Z, FENG X L, et al. Mechanical properties of bulk metallic glasses composites during high temperature structural relaxation[J]. Chinese Journal of Rare Metals, 2015, 39(2): 124-129 (in Chinese).
[24] ANGELL C A. Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267(5206): 1924-1935.
[25] ANGELL C A, NGAI K L, MCKENNA G B, et al. Relaxation in glassforming liquids and amorphous solids[J]. Journal of Applied Physics, 2000, 88(6): 3113-3157.
[26] DEBENEDETTI P G, STILLINGER F H. Supercooled liquids and the glass transition[J]. Nature, 2001, 410(6825): 259-267.
[27] LUBCHENKO V, WOLYNES P G. Theory of structural glasses and supercooled liquids[J]. Annual Review of Physical Chemistry, 2007, 58: 235-266.
[28] WANG Z, SUN B A, BAI H Y, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass[J]. Nature Communications, 2014, 5: 5823.
[29] SONG L J, GAO Y R, ZOU P, et al. Detecting the exponential relaxation spectrum in glasses by high-precision nanocalorimetry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(20): e2302776120.
[30] GAO Y R, TONG Y, SONG L J, et al. Continuous transition from gamma to beta dynamics during stress relaxation[J]. Scripta Materialia, 2023, 224: 115114.
[31] JURCA S, CHEN H, SEN S. Structural, shear and volume relaxation in a commercial float glass during aging[J]. Journal of Non-Crystalline Solids, 2022, 589: 121650.
[32] FYTAS G. Relaxation processes in amorphous poly(cyclohexyl methacrylate) in the rubbery and glassy state studied by photon correlation spectroscopy[J]. Macromolecules, 1989, 22(1): 211-215.
[33] LAUPRETRE F, VIRLET J, BAYLE J P. Local motions between unequivalent conformations in solid poly(cyclohexyl methacrylate): a variable-temperature magic-angle carbon-13 nuclear magnetic resonance study[J]. Macromolecules, 1985, 18(10): 1846-1850.
[34] CASALINI R, ROLAND C M. Pressure evolution of the excess wing in a type-BGlass former[J]. Physical Review Letters, 2003, 91: 015702.
[35] NGAI K L, PALUCH M. Classification of secondary relaxation in glass-formers based on dynamic properties[J]. The Journal of Chemical Physics, 2004, 120(2): 857-873.
[36] BHMER R, DIEZEMANN G, GEIL B, et al. Correlation of primary and secondary relaxations in a supercooled liquid[J]. Physical Review Letters, 2006, 97(13): 135701.
[37] CASALINI R, ROLAND C M. Aging of the secondary relaxation to probe structural relaxation in the glassy state[J]. Physical Review Letters, 2009, 102(3): 035701.
[38] COHEN M H, TURNBULL D. Molecular transport in liquids and glasses[J]. Journal of Chemical Physics, 1959, 31(5): 1164-1169.
[39] ADAM G, GIBBS J H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. The Journal of Chemical Physics, 1965, 43(1): 139-146.
[40] BOYER R F. Mechanical motions in amorphous and semi-crystalline polymers[J]. Polymer, 1976, 17(11): 996-1008.
[41] JOHARI G P, GOLDSTEIN M. Viscous liquids and the glass transition. II. secondary relaxations in glasses of rigid molecules[J]. Journal of Chemical Physics, 1970, 53(6): 2372-2388.
[42] JOHARI G P, GOLDSTEIN M. Viscous liquids and the glass transition. III. secondary relaxations in aliphatic alcohols and other nonrigid molecules[J]. The Journal of Chemical Physics, 1971, 55(9): 4245-4252.
[43] HU L N, ZHANG C Z, YUE Y Z, et al. A new starting point for studying the nature of glass transition: slow β relaxation of glass state[J]. Chinese Science Bulletin, 2010, 55(2): 115-131 (in Chinese).
[44] NGAI K L, LUNKENHEIMER P, LEN C, et al. Nature and properties of the Johari-Goldstein β-relaxation in the equilibrium liquid state of a class of glass-formers[J]. The Journal of Chemical Physics, 2001, 115(3): 1405-1413.
[45] WANG L M, SUN M D. Studies of non-exponentiality of structural relaxation in glass forming liquids: a review[J]. Journal of Yanshan University, 2010, 34(6): 471-482 (in Chinese).
[46] BHMER R, NGAI K L, ANGELL C A, et al. Nonexponential relaxations in strong and fragile glass formers[J]. The Journal of Chemical Physics, 1993, 99(5): 4201-4209.
[47] SIDEBOTTOM D, BERGMAN R, BRJESSON L, et al. Two-step relaxation decay in a strong glass former[J]. Physical Review Letters, 1993, 71(14): 2260-2263.
[48] SIDEBOTTOM D L, CHANGSTROM J R. Viscoelastic relaxation in molten phosphorus pentoxide using photon correlation spectroscopy[J]. Physical Review B, 2008, 77(2): 020201.
[49] SIDEBOTTOM D L, RODENBURG B V, CHANGSTROM J R. Connecting structure and dynamics in glass forming materials by photon correlation spectroscopy[J]. Physical Review B, 2007, 75(13): 132201.
[50] SIMMONS J H, OCHOA R, SIMMONS K D, et al. Non-Newtonian viscous flow in soda-lime-silica glass at forming and annealing temperatures[J]. Journal of Non-Crystalline Solids, 1988, 105(3): 313-322.
[51] MAJHI K, VARMA K B R. Dielectric relaxation in CaO-Bi2O3-B2O3 glasses[J]. International Journal of Applied Ceramic Technology, 2009, 7(supplement 1): E89-E97.
[52] RODENBURG B V, SIDEBOTTOM D L. Dynamic light scattering in mixed alkali metaphosphate glass forming liquids[J]. The Journal of Chemical Physics, 2006, 125(2): 024502.
[53] LEBON M J, DREYFUS C, LI G, et al. Depolarized light-scattering study of molten zinc chloride[J]. Physical Review E, 1995, 51(5): 4537-4547.
[54] ZISSI G D, YANNOPOULOS S N. Dynamic light scattering study of the liquid glass transition for the GdCl3-3AlCl3 glass-forming mixture[J]. Physical Review E, 2001, 64(5): 051504.
[55] PAVLATOU E A, RIZOS A K, PAPATHEODOROU G N, et al. Dynamic light scattering study of ionic KNO3-Ca(NO3)2 mixtures[J]. The Journal of Chemical Physics, 1991, 94(1): 224-232.
[56] CHENG L T, YAN Y X, NELSON K A. Ultrasonic and hypersonic properties of molten KNO3-Ca(NO3)2 mixture[J]. The Journal of Chemical Physics, 1989, 91(10): 6052-6061.
[57] QIAO J C, WANG Y J, ZHAO L Z, et al. Transition from stress-driven to thermally activated stress relaxation in metallic glasses[J]. Physical Review B, 2016, 94(10): 104203.
[58] LUO P, WEN P, BAI H, et al. Relaxation decoupling in metallic glasses at low temperatures[J]. Physical Review Letters, 2017, 118(22): 225901.
[59] YUE Y Z, JENSEN S L, DE C CHRISTIANSEN J. Physical aging in a hyperquenched glass[J]. Applied Physics Letters, 2002, 81(16): 2983-2985.
[60] HU L N, YUE Y Z. Secondary relaxation behavior in a strong glass[J]. The Journal of Physical Chemistry B, 2008, 112(30): 9053-9057.
[61] ZHAO R, JIANG H Y, LUO P, et al. Reversible and irreversible β-relaxations in metallic glasses[J]. Physical Review B, 2020, 101(9): 094203.
[62] KIM D L, TOMOZAWA M. Fictive temperature of silica glass optical fibers-re-examination[J]. Journal of Non-Crystalline Solids, 2001, 286(1/2): 132-138.
[63] LE PARC R, CHAMPAGNON B, GUENOT P, et al. Thermal annealing and density fluctuations in silica glass[J]. Journal of Non-Crystalline Solids, 2001, 293/294/295: 366-369.
[64] LEVELUT C, FAIVRE A, LE PARC R, et al. Influence of thermal aging on density fluctuations in oxide glasses measured by small-angle X-ray scattering[J]. Journal of Non-Crystalline Solids, 2002, 307/308/309/310: 426-435.
[65] TOMOZAWA M, LEE Y K. Surface fictive temperature of annealed and rate-cooled soda-lime glasses[J]. Journal of Non-Crystalline Solids, 1999, 253(1/2/3): 119-125.
[66] GALLINO I, CANGIALOSI D, EVENSON Z, et al. Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former[J]. Acta Materialia, 2018, 144: 400-410.
[67] WANG J Q, SHEN Y, PEREPEZKO J H, et al. Increasing the kinetic stability of bulk metallic glasses[J]. Acta Materialia, 2016, 104: 25-32.
[68] SCHROERS J. On the formability of bulk metallic glass in its supercooled liquid state[J]. Acta Materialia, 2008, 56(3): 471-478.
[69] HU L N, YUE Y Z. Secondary relaxation in metallic glass formers: its correlation with the genuine johari-goldstein relaxation[J]. The Journal of Physical Chemistry C, 2009, 113(33): 15001-15006.
[70] NGAI K, CAPACCIOLI S. Relation between the activation energy of the Johari-Goldstein β relaxation and Tg of glass formers[J]. Physical Review E, 2004, 69(3): 031501.
[71] SCHROERS J, LOHWONGWATANA B, JOHNSON W L, et al. Gold based bulk metallic glass[J]. Applied Physics Letters, 2005, 87(6): 061912.
[72] SAITO K, OGAWA N, IKUSHIMA A J, et al. Effects of aluminum impurity on the structural relaxation in silica glass[J]. Journal of Non-Crystalline Solids, 2000, 270(1/2/3): 60-65.
[73] HE X Y, DAI F, SU Y, et al. Effect of bulk phase and surface structure on structural relaxation of Shi Ying glass[J]. The World of Building Materials, 2016, 37(5): 1-3 (in Chinese).
[74] ZHAN W T, HE J X, WANG Y Z, et al. Influence of hydroxyl content on structural relaxation in oxy-fuel combustion float glass[J]. Materials Review, 2018, 32(12): 2062-2065 (in Chinese).
[75] FULCHER G S. Analysis of recent measurements of the viscosity of glasses[J]. Journal of the American Ceramic Society, 1925, 8(6): 339-355.
[76] DINGWELL D B, WEBB S L. Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes[J]. Physics and Chemistry of Minerals, 1989, 16(5): 508-516.
[77] SIPP A, RICHET P. Equivalence of volume, enthalpy and viscosity relaxation kinetics in glass-forming silicate liquids[J]. Journal of Non-Crystalline Solids, 2002, 298(2/3): 202-212.
[78] TOMOZAWA M, PENG Y L. Surface relaxation as a mechanism of static fatigue of pristine silica glass fibers[J]. Journal of Non-Crystalline Solids, 1998, 240(1/2/3): 104-109.
[79] PALUCH M, GRZYBOWSKA K, GRZYBOWSKI A. Effect of high pressure on the relaxation dynamics of glass-forming liquids[J]. Journal of Physics: Condensed Matter, 2007, 19(20): 205117.
[80] PENG Y L, TOMOZAWA M, BLANCHET T A. Tensile stress-acceleration of the surface structural relaxation of SiO2 optical fibers[J]. Journal of Non-Crystalline Solids, 1997, 222: 376-382.
[81] WEBB E B, GAROFALINI S H. Relaxation of silica glass surfaces before and after stress modification in a wet and dry atmosphere: molecular dynamics simulations[J]. Journal of Non-Crystalline Solids, 1998, 226(1/2): 47-57.
[82] LIAO W F, HU C J, WANG M Z, et al. Ion-exchange process of ultrathin aluminosilicate glasses[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1163-1169 (in Chinese).
[83] TOMOZAWA M, KIM D L, AGARWAL A, et al. Water diffusion and surface structural relaxation of silica glasses[J]. Journal of Non-Crystalline Solids, 2001, 288(1/2/3): 73-80.
[84] DAVIS K M, TOMOZAWA M. Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity[J]. Journal of Non-Crystalline Solids, 1995, 185(3): 203-220.
[85] AGARWAL A, TOMOZAWA M. Surface and bulk structural relaxation kinetics of silica glass[J]. Journal of Non-Crystalline Solids, 1997, 209(3): 264-272.
[86] TOMOZAWA M, LI H, DAVIS K M. Water diffusion, oxygen vacancy annihilation and structural relaxation in silica glasses[J]. Journal of Non-Crystalline Solids, 1994, 179: 162-169.
[87] AMMA S I, KIM S H, PANTANO C G. Analysis of water and hydroxyl species in soda lime glass surfaces using attenuated total reflection (ATR)-IR spectroscopy[J]. Journal of the American Ceramic Society, 2016, 99(1): 128-134.
[88] GEISLER T, DOHMEN L, LENTING C, et al. Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy[J]. Nature Materials, 2019, 18(4): 342-348.
[89] GIN S, MIR A H, JAN A, et al. A general mechanism for gel layer formation on borosilicate glass under aqueous corrosion[J]. The Journal of Physical Chemistry C, 2020, 124(9): 5132-5144.
[90] WEI Z Y, GU S X, WANG X W, et al. Study on the interaction process and mechanism between glass and water[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4049-4055 (in Chinese).
[91] TOMOZAWA M, HEPBURN R W. Surface structural relaxation of silica glass: a possible mechanism of mechanical fatigue[J]. Journal of Non-Crystalline Solids, 2004, 345/346: 449-460.
[92] XU J, WU Y L, ZHAO F H, et al. Research progress in engineered stress profile glass[J]. Journal of the Chinese Ceramic Society, 2009, 37(12): 2135-2141 (in Chinese).