• Photonics Research
  • Vol. 6, Issue 5, 357 (2018)
Chang Cheng1、2, Juan Li1、2, Hongxiang Lei1、*, and Baojun Li2
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • 2Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
  • show less
    DOI: 10.1364/PRJ.6.000357 Cite this Article Set citation alerts
    Chang Cheng, Juan Li, Hongxiang Lei, Baojun Li. Surface enhanced Raman scattering of gold nanoparticles aggregated by gold-nanofilm-coated nanofiber[J]. Photonics Research, 2018, 6(5): 357 Copy Citation Text show less
    References

    [1] J. F. Li, J. R. Anema, T. Wandlowski, Z. Q. Tian. Dielectric shell isolated and graphnen shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev., 44, 8399-8409(2015).

    [2] A. Khetani, A. Momenpour, E. I. Alarcon, H. Anis. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS). Biomed. Opt. Express, 6, 4599-4609(2015).

    [3] S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [4] C. Lim, J. Hong, B. G. Chung, A. J. deMello, J. Choo. Optofluidic platforms based on surface-enhanced Raman scattering. Analyst, 135, 837-844(2010).

    [5] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett., 78, 1667-1670(1997).

    [6] K. A. Willets, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58, 267-297(2007).

    [7] H. Wei, H. Xu. Hot spots in different metal nanostructures for plasmon enhanced Raman spectroscopy. Nanoscale, 5, 10794-10805(2013).

    [8] T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, G. Haran. Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer. Proc. Natl. Acad. Sci. USA, 105, 16448-16453(2008).

    [9] M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, V. A. Apkarian. Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres. J. Phys. Chem. C, 116, 10415-10423(2012).

    [10] A. G. Brolo. Plamonics for future biosensors. Nat. Photonics, 6, 709-713(2012).

    [11] S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev., 46, 4042-4076(2017).

    [12] M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, V. A. Apkarian. Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. ACS Nano, 6, 10343-10354(2012).

    [13] L. Tong, H. Xu, M. Kall. Nanogaps for SERS applications. MRS Bull., 39, 163-168(2014).

    [14] Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, U. Bach. DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor. Adv. Funct. Mater., 23, 1519-1526(2013).

    [15] W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, J. Yao. Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy. RSC Adv., 5, 47640-47646(2015).

    [16] H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, Z. Tian. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J. Am. Chem. Soc., 136, 5332-5341(2014).

    [17] J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, R. P. Van Duyne. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc., 131, 849-854(2009).

    [18] Y. Guo, M. K. K. Oo, K. Reddy, X. Fan. Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries. ACS Nano, 6, 381-388(2012).

    [19] L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, S. Singamaneni. Plasmonic biofoam: a versatile optically active material. Nano Lett., 16, 609-616(2016).

    [20] X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, C. Jiang. Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles. Nanoscale, 9, 3114-3120(2017).

    [21] L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, M. Käll. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip, 9, 193-195(2009).

    [22] B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, P. G. Gucciardi. SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating. Sci. Rep., 6, 26952(2016).

    [23] P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, G. V. P. Kumar. Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. Nat. Commun., 5, 4357(2014).

    [24] S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, Z. Tian. Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces. J. Phys. Chem. C, 119, 5246-5251(2015).

    [25] K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, V. Ara Apkarian. Ultrafast coherent Raman scattering at plasmonic nanojunctions. J. Phys. Chem. C, 120, 20943-20953(2016).

    [26] L. Kong, C. Lee, C. M. Earhart, B. Cordovez, J. W. Chan. A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles. Opt. Express, 23, 6793-6802(2015).

    [27] V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, K. Dholakia. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B, 73, 085417(2006).

    [28] M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, R. P. Van Duyne. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C, 116, 478-483(2012).

    [29] V. A. Parsegian. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists(2006).

    [30] K. Jiang, P. Pinchuk. Temperature and size-dependent Hamaker constants for metal nanoparticles. Nanotechnology, 27, 345710(2016).

    [31] P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede. Expanding the optical trapping range of gold nanoparticles. Nano Lett., 5, 1937-1942(2005).

    [32] H. Xin, B. Li. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber. Opt. Express, 19, 13285-13290(2011).

    [33] H. Chen, F. Tian, J. Kanka, H. Du. A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond. Appl. Phys. Lett., 106, 111102(2015).

    [34] L. Jensen, G. C. Schatz. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. J. Phys. Chem. A, 110, 5973-5977(2006).

    [35] H. Chen, F. Tian, J. Chi, J. Kanka, H. Du. Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing. Opt. Lett., 39, 5822-5825(2014).

    [36] A. Otto, W. Akemann, A. Pucci. Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS. Isr. J. Chem., 46, 307-315(2006).

    [37] S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, A. Nitzan. Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces. Phys. Rev. B, 93, 035411(2016).

    [38] J. T. Hugall, J. J. Baumberg. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett., 15, 2600-2604(2015).

    [39] A. R. Bizzarri, S. Cannistraro. Statistical analysis of intensity fluctuations in single molecule SERS spectra. Phys. Chem. Chem. Phys., 9, 5315-5319(2007).

    [40] H. Ahmad, H.-D. Kronfeldt. High sensitive seawater resistant SERS substrates based on gold island film produced by electroless plating. Marine Sci., 3, 1-8(2013).

    [41] W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, J. Yao. On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary. J. Raman Spectrosc., 45, 736-744(2014).

    [42] N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, N. Wu. Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine. ACS Sens., 1, 1193-1197(2016).

    CLP Journals

    [1] Min Liu, Wending Zhang, Fanfan Lu, Tianyang Xue, Xin Li, Lu Zhang, Dong Mao, Ligang Huang, Feng Gao, Ting Mei, Jianlin Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy[J]. Photonics Research, 2019, 7(5): 526

    Chang Cheng, Juan Li, Hongxiang Lei, Baojun Li. Surface enhanced Raman scattering of gold nanoparticles aggregated by gold-nanofilm-coated nanofiber[J]. Photonics Research, 2018, 6(5): 357
    Download Citation