• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802001 (2021)
Mingchi Zhang, Ziyuan Liu, Ning Pan, Haiyan Tao*, and Jingquan Lin**
Author Affiliations
  • School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/CJL202148.1802001 Cite this Article Set citation alerts
    Mingchi Zhang, Ziyuan Liu, Ning Pan, Haiyan Tao, Jingquan Lin. Wetting Mechanism of Stainless Steel Micro-Nano Structure Surface Prepared by Femtosecond Laser[J]. Chinese Journal of Lasers, 2021, 48(18): 1802001 Copy Citation Text show less
    References

    [1] Ta D V, Dunn A, Wasley T J et al. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications[J]. Applied Surface Science, 357, 248-254(2015).

    [2] Jagdheesh R, Pathiraj B, Karatay E et al. Laser-induced nanoscale superhydrophobic structures on metal surfaces[J]. Langmuir, 27, 8464-8469(2011).

    [3] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).

    [4] Jopp J, Grüll H, Yerushalmi-Rozen R. Wetting behavior of water droplets on hydrophobic microtextures of comparable size[J]. Langmuir, 20, 10015-10019(2004).

    [5] Domke M, Sonderegger G, Kostal E et al. Transparent laser-structured glasses with superhydrophilic properties for anti-fogging applications[J]. Applied Physics A, 125, 1-10(2019).

    [6] Zheng Y, Lan Z, Cao K J et al. A new insight of temperature distribution on superhydrophilic surface horizontal tubes falling film at low spray density[J]. International Communications in Heat and Mass Transfer, 91, 17-22(2018).

    [7] Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 25, 4821-4827(2009).

    [8] Sakai N, Wang R, Fujishima A et al. Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces[J]. Langmuir, 14, 5918-5920(1998).

    [9] Zhang H, Cao J L, Shao G S et al. Synthesis of transition metal oxide nanoparticles with ultrahigh oxygen adsorption capacity and efficient catalytic oxidation performance[J]. Journal of Materials Chemistry, 19, 6097-6099(2009).

    [10] Chen L, Wen G Q, Guo F et al. Fractal characteristics of microstructures on a superhydrophobic silicone rubber surface induced by a nanosecond laser[J]. Chinese Journal of Lasers, 48, 0602201(2021).

    [11] Liu Y, Yin X M, Zhang J J et al. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate[J]. Applied Surface Science, 280, 845-849(2013).

    [12] Liu P, Cao L, Zhao W et al. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons[J]. Applied Surface Science, 324, 576-583(2015).

    [13] Guan Y C, Luo F F, Lim G C et al. Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method[J]. Materials & Design, 78, 19-24(2015).

    [14] Ding Y Y, Su Y H, Chen L. Experimentally investigating wettability and fog collection characteristics of (super) hydrophobic/(super)hydrophilic aluminum membranes processed by nanosecond laser[J]. Laser & Optoelectronics Progress, 57, 111412(2020).

    [15] Wang C, Fu X Q, Xue X Y et al. Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption[J]. Nanotechnology, 18, 145506(2007).

    [16] Sun R D, Nakajima A, Fujishima A et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J]. The Journal of Physical Chemistry B, 105, 1984-1990(2001).

    [17] Wang G Y, Zhang T Y. Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface[J]. Journal of Colloid and Interface Science, 377, 438-441(2012).

    [18] Huang S Y, Hu Y W, Pan W. Relationship between the structure and hydrophobic performance of Ni-TiO2 nanocomposite coatings by electrodeposition[J]. Surface and Coatings Technology, 205, 3872-3876(2011).

    [19] Rao A V, Latthe S S, Mahadik S A et al. Mechanically stable and corrosion resistant superhydrophobic Sol-Gel coatings on copper substrate[J]. Applied Surface Science, 257, 5772-5776(2011).

    [20] Kamal S A A, Ritikos R, Rahman S A. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique[J]. Applied Surface Science, 328, 146-153(2015).

    [21] Crick C R, Bear J C, Kafizas A et al. Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition[J]. Advanced Materials, 24, 3505-3508(2012).

    [22] Ruan M, Li W, Wang B S et al. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates[J]. Langmuir, 29, 8482-8491(2013).

    [23] Sung Y H, Kim Y D, Choi H J et al. Fabrication of superhydrophobic surfaces with nano-in-micro structures using UV-nanoimprint lithography and thermal shrinkage films[J]. Applied Surface Science, 349, 169-173(2015).

    [24] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).

    [25] Jiang L, Tsai H L. Energy transport and material removal in wide bandgap materials by afemtosecond laser pulse[J]. International Journal of Heat and Mass Transfer, 48, 487-499(2005).

    [26] Ladieu F, Martin P, Guizard S. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics[J]. Applied Physics Letters, 81, 957-959(2002).

    [27] Miller S A. Ultrashort laser pulse phenomena[J]. Optical Engineering, 36, 2362-2363(1997).

    [28] Liu Z Y, Pan N, Tao H Y et al. Temperature-dependent wetting characteristics of micro-nano-structured metal surface formed by femtosecond laser[J]. Journal of Materials Science, 56, 3525-3534(2021).

    [29] Fan J C, de Coninck J, Wu H G et al. A generalized examination of capillary force balance at contact line: on rough surfaces or in two-liquid systems[J]. Journal of Colloid and Interface Science, 585, 320-327(2021).

    [30] Cardoso J T, Garcia-Girón A, Romano J M et al. Influence of ambient conditions on the evolution of wettability properties of an IR-, ns-laser textured aluminium alloy[J]. RSC Advances, 7, 39617-39627(2017).

    [31] Yang Z, Liu X P, Tian Y L. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J]. Journal of Colloid and Interface Science, 533, 268-277(2019).

    [32] Bizi-Bandoki P, Valette S, Audouard E et al. Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations[J]. Applied Surface Science, 273, 399-407(2013).

    [33] Long J, Zhong M, Fan P et al. Wettability conversion of ultrafast laser structured copper surface[J]. Journal of Laser Applications, 27, S29107(2015).

    [34] Takeda S, Fukawa M, Hayashi Y et al. Surface OH group governing adsorption properties of metal oxide films[J]. Thin Solid Films, 339, 220-224(1999).

    [35] Lim H S, Kwak D, Lee D Y et al. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity[J]. Journal of the American Chemical Society, 129, 4128-4129(2007).

    [36] Feng X J, Feng L, Jin M H et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. Journal of the American Chemical Society, 126, 62-63(2004).

    Mingchi Zhang, Ziyuan Liu, Ning Pan, Haiyan Tao, Jingquan Lin. Wetting Mechanism of Stainless Steel Micro-Nano Structure Surface Prepared by Femtosecond Laser[J]. Chinese Journal of Lasers, 2021, 48(18): 1802001
    Download Citation