[1] Loh Yuenpeng, Chan Cheeseng. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30-42.
[5] Wei Ch, Wang W J, Yang W H, et al. Deep retinex decomposition for low-light enhancement[C] / / British Machine Vision Conference, 2018:155-162.
[6] JIANG, Yifan. Enlightengan: Deep light enhancement without paired supervision[J]. IEEE transactions on image processing, 2021, 30: 2340-2349.
[7] ZHANG Yonghua, ZHANG Jiawan, Guo Xiaojie. Kindling the darkness: A practical low-light image enhancer[C] / /Proceedings of the 27th ACM international conference on multimedia, 2019:1632-1640.
[8] Cui Z, Li K, Gu L, et al. Illumination Adaptive Transformer[J]. arXiv preprint arXiv:2205. 14871, 2022.
[9] Carion, N. , Massa, F. , et al. End-to-end object detection with transformers[C] / / European Conference on Computer Vision, 2020:213-229.
[10] Fan C M, Liu T J, Liu K H. Half Wavelet Attention on M-Net+ for Low-Light Image Enhancement[J]. arXiv preprint arXiv:2203. 01296, 2022.
[11] Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on computational imaging, 2016, 3(1): 47-57.
[12] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in the dark[C] / / IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 2018:291-3300.
[14] Wei C, Wang W, Yang W, et al. Deep retinex decomposition for low-light enhancement[J]. arXiv preprint arXiv:1808. 04560, 2018.
[15] Hong, Yang, et al. Crafting Object Detection in Very Low Light[C] / / British Machine Vision Conference, 2021:1-12.