• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101014 (2022)
Xianwei Xiong1, Shengping Chen2, Hongtian Zhu1, Jintao Wang1, Jinzhang Wang1, Chunyu Guo1, Peiguang Yan1、*, and Shuangchen Ruan1、3
Author Affiliations
  • 1Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • 2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 3Shenzhen Technology University, Shenzhen, Guangdong 518118, China
  • show less
    DOI: 10.3788/CJL202249.0101014 Cite this Article Set citation alerts
    Xianwei Xiong, Shengping Chen, Hongtian Zhu, Jintao Wang, Jinzhang Wang, Chunyu Guo, Peiguang Yan, Shuangchen Ruan. High Reflectivity Mid-Infrared Fiber Bragg Grating by Femtosecond Laser Direct Inscription Method[J]. Chinese Journal of Lasers, 2022, 49(1): 0101014 Copy Citation Text show less
    References

    [1] Ma J, Qin Z P, Xie G Q et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region[J]. Applied Physics Reviews, 6, 021317(2019).

    [2] Wang Z H, Zhang B, Liu J et al. Recent developments in mid-infrared fiber lasers: status and challenges[J]. Optics & Laser Technology, 132, 106497(2020).

    [3] Caron N, Bernier M, Faucher D et al. Understanding the fiber tip thermal runaway present in 3 μm fluoride glass fiber lasers[J]. Optics Express, 20, 22188-22194(2012).

    [4] Lü R D, Chen T, Fan C S et al. Application of fiber lasers based on femtosecond laser inscribed fiber Bragg gratings[J]. Laser & Optoelectronics Progress, 57, 111426(2020).

    [5] Grobnic D, Mihailov S J, Smelser C W. Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers[J]. IEEE Photonics Technology Letters, 18, 2686-2688(2006).

    [6] Bérubé J P, Bernier M, Vallée R. Femtosecond laser-induced refractive index modifications in fluoride glass[J]. Optical Materials Express, 3, 598-611(2013).

    [7] Gross S, Lancaster D G, Ebendorff-Heidepriem H et al. Femtosecond laser induced structural changes in fluorozirconate glass[J]. Optical Materials Express, 3, 574-583(2013).

    [8] Hudson D D, Williams R J, Withford M J et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 38, 2388-2390(2013).

    [9] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).

    [10] Goya K, Matsukuma H, Uehara H et al. Plane-by-plane femtosecond laser inscription of first-order fiber Bragg gratings in fluoride glass fiber for in situ monitoring of lasing evolution[J]. Optics Express, 26, 33305-33313(2018).

    [11] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [12] Bharathan G, Fernandez T T, Ams M et al. Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss[J]. Optics Letters, 44, 423-426(2019).

    [13] Aslund M L, Nemanja N, Groothoff N et al. Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings[J]. Optics Express, 16, 14248-14254(2008).

    [14] Rao Y J, Wang Y P, Zhu T[M]. Theory and applications of fiber gratings, 137-138(2006).

    [15] Bharathan G, Woodward R I, Ams M et al. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers[J]. Optics Express, 25, 30013-30019(2017).

    [16] Bharathan G, Fernandez T T, Ams M et al. Femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss at wavelengths beyond 4 μm[J]. Optics Letters, 45, 4316-4319(2020).

    [17] Chen C. Fabrication of robust fiber gratings by femtosecond laser and their applications[D], 30-32(2014).

    [18] Maes F, Stihler C, Pleau L P et al. 3.42 μm lasing in heavily-erbium-doped fluoride fibers[J]. Optics Express, 27, 2170-2183(2019).

    [19] Majewski M R, Bharathan G, Fuerbach A et al. Long wavelength operation of a dysprosium fiber laser for polymer processing[J]. Optics Letters, 46, 600-603(2021).

    [20] Goya K, Uehara H, Konishi D et al. Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps[J]. Applied Physics Express, 12, 102007(2019).

    [21] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [22] Woodward R I, Majewski M R, Bharathan G et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 43, 1471-1474(2018).

    [23] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).

    [24] Majewski M R, Bharathan G, Fuerbach A et al. Long wavelength operation of a dysprosium fiber laser for polymer processing[J]. Optics Letters, 46, 600-603(2021).

    Xianwei Xiong, Shengping Chen, Hongtian Zhu, Jintao Wang, Jinzhang Wang, Chunyu Guo, Peiguang Yan, Shuangchen Ruan. High Reflectivity Mid-Infrared Fiber Bragg Grating by Femtosecond Laser Direct Inscription Method[J]. Chinese Journal of Lasers, 2022, 49(1): 0101014
    Download Citation