• Matter and Radiation at Extremes
  • Vol. 6, Issue 5, 055901 (2021)
Hong Yang, Shasha Gao, Baibin Jiang, Jun Xie, Juxi Liang, Xiaobo Qi, Kai Wanga), Chaoyou Tao, Fei Dai, Wei Lin, and Juan Zhang
Author Affiliations
  • Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.1063/5.0039131 Cite this Article
    Hong Yang, Shasha Gao, Baibin Jiang, Jun Xie, Juxi Liang, Xiaobo Qi, Kai Wang, Chaoyou Tao, Fei Dai, Wei Lin, Juan Zhang. Analyzing and relieving the thermal issues caused by fabrication details of a deuterium cryogenic target[J]. Matter and Radiation at Extremes, 2021, 6(5): 055901 Copy Citation Text show less
    References

    [1] R.Betti, T. C.Sangster, R. S.Craxton et al. Cryogenic DT and D2 targets for inertial confinement fusion. Phys. Plasmas, 14, 058101(2007).

    [2] T. C.Sangster, D. R.Harding, D. D.Meyerhofer et al. Producing cryogenic deuterium targets for experiments on OMEGA. Fusion Sci. Technol., 48, 1299-1306(2005).

    [3] E. R.Koresheva, E. L.Koshelev, I. V.Aleksandrova. Multilevel system for protecting the cryogenic target during its delivery to the focus of high-power laser facility at high repetition rate. Phys. At. Nucl., 82, 1060-1071(2019).

    [4] M.Martin, A.Choux, C.Gauvin et al. A way to reach the cryogenic’s temperature and roughness requirements for the laser megajoule facility. Fusion Sci. Technol., 51, 747-752(2007).

    [5] R.Dylla-Spears, J.Field, S.Baxamusa et al. Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries. J. Appl. Phys., 115, 124901(2014).

    [6] S. B.Wineberg, A. J.Martin, R. J.Simms. Beta heating driven deuterium–tritium ice redistribution, modeling studies. J. Vac. Sci. Technol. A, 7, 1157-1160(1989).

    [7] A. V.Hamza, S. O.Kucheyev. Condensed hydrogen for thermonuclear fusion. J. Appl. Phys., 108, 091101(2010).

    [8] J. D.Lindl, D. A.Callahan, S. W.Haan et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001(2011).

    [9] H.Yang, C. Y.Tao, S. S.Gao et al. Predicting spherical symmetry degeneration of non-infrared deuterium ice layer in a cryogenic capsule. Nucl. Fusion, 60, 026010(2020).

    [10] J. D.Moody, J. J.Sanchez, R. A.London et al. Thermal infrared exposure of cryogenic indirect drive ICF targets. Fusion Sci. Technol., 49, 581-587(2006).

    [11] P.Baclet, G.Moll, M.Martin. Thermal simulations of the LMJ cryogenic target. Fusion Sci. Technol., 51, 737-746(2007).

    [12] X.Huang, S. M.Peng, X. S.Zhou et al. Thermal simulations of the hohlraum cryogenic target: Low-mode control and parameter optimization. Fusion Sci. Technol., 68, 788-796(2015).

    [13] Y.Sun, G.Zhou, Q.Li et al. Numerical investigation on the temperature control of a NIF cryogenic target. IOP Conf. Ser.: Mater. Sci. Eng., 101, 012096(2015).

    [14] C.Li, Y. Z.Li, F. C.Guo et al. Investigation on thermal distribution of cryogenic target with low-temperature thermal contact conductance. Cryogenics, 2019, 53-60(2019).

    [15] P. W.Chen, J.Zhao, C.Li et al. Thermal distribution and cooling performance of cryogenic target under stable and fluctuating cooling conditions. Fusion Eng. Des., 127, 23-33(2018).

    [16] J.Zhao, C.Li, Y.Li. Numerical analysis of dynamic heating modulation during rapid cooling of fuel layer in an indirect-drive cryogenic target. Prog. Nucl. Energy, 114, 22-30(2019).

    [17] E. R.Mapoles, J. D.Sater, B. J.Kozioziemski et al. Deuterium-tritium fuel layer formation for the National Ignition Facility. Fusion Sci. Technol., 59, 14-25(2011).

    [18] L. A.Schwalbe. Recent progress in deuterium triple-point measurements. J. Phys. Chem. Ref. Data, 15, 1351(1986).

    [19] K. J.Craig, J. P.Meyer, A. E.Rungasamy. 3-D CFD modeling of a slanted receiver in a compact linear fresnel plant with etendue-matched mirror field. Energy Procedia, 69, 188-197(2015).

    [20] E. S.Myra, W. D.Hawkins. A comparison study of discrete-ordinates and flux-limited diffusion methods for modeling radiation transport. High Energy Density Phys., 9, 91-102(2013).

    [21] T.-M.Xu, X.-L.Wei, S.-E.Hui. Three-dimensional radiation in absorbing-emitting-scattering medium using the discrete-ordinates approximation. J. Therm. Sci., 7, 255-263(1998).

    [22] Z.Chi, L.Yinsheng, L.Hanqin et al. Development of calculation of thermal conductivity of silicon carbide. J. Chin. Ceram. Soc., 43, 268-275(2015).

    [23] E. S.Drexler, N. J.Simon, R. P.Reed. Properties of Copper and Copper Alloys at Cryogenic Temperatures(1992).

    [24] A. A.Chernov, B. J.Kozioziemski, J. A.Koch et al. Single crystal growth and formation of defects in deuterium-tritium layers for inertial confinement nuclear fusion. Appl. Phys. Lett., 94, 064105(2009).

    [25] J.Li, H. L.Lei, K.Wang et al. Characterization of inertial confinement fusion targets using X-ray phase contrast imaging. Opt. Commun., 332, 9-13(2014).

    Hong Yang, Shasha Gao, Baibin Jiang, Jun Xie, Juxi Liang, Xiaobo Qi, Kai Wang, Chaoyou Tao, Fei Dai, Wei Lin, Juan Zhang. Analyzing and relieving the thermal issues caused by fabrication details of a deuterium cryogenic target[J]. Matter and Radiation at Extremes, 2021, 6(5): 055901
    Download Citation