• Semiconductor Optoelectronics
  • Vol. 41, Issue 5, 618 (2020)
SONG Yue1,2, NING Yongqiang1,2,*, QIN Li1,2, CHEN Yongyi1,2..., ZHANG Jinlong1,2, ZHANG Jun1,2 and WANG Lijun1,2|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2020.05.003 Cite this Article
    SONG Yue, NING Yongqiang, QIN Li, CHEN Yongyi, ZHANG Jinlong, ZHANG Jun, WANG Lijun. Review on The Methods of Preventing Catastrophic Optical Mirror Damage in High-power Diode Lasers[J]. Semiconductor Optoelectronics, 2020, 41(5): 618 Copy Citation Text show less
    References

    [1] Tomm J W, Ziegler M, Hempel M, et al. Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers[J]. Laser Photonics Rev., 2011, 5(3): 422-441.

    [2] Kressel H, Mierop H. Catastrophic degradation in GaAs injection lasers[J]. J. Appl. Phys., 1967, 38(13): 5419-5421.

    [3] Eliseev P G. Degradation of injection lasers[J]. J. Lumin., 1973, 7: 338-356.

    [4] Henry C H, Petroff P M, Logan R A, et al. Catastrophic damage of AlxGa1-xAs double-heterostructure laser material[J]. J. Appl. Phys., 1979, 50(5): 3721-3732.

    [5] Tang W C, Rosen H J, Vettiger P, et al. Raman microprobe study of the time development of AlGaAs single quantum well laser facet temperature on route to catastrophic breakdown[J]. Appl. Phys. Lett., 1991, 58(6): 557-559.

    [6] Chen G, Tien C L. Facet heating of quantum well lasers[J]. J. Appl. Phys., 1993, 74(4): 2167-2174.

    [7] Schatz R, Bethea C. Steady state model for facet heating to thermal runaway in semiconductor lasers[J]. J. Appl. Phys., 1994, 76(4): 2509-2521.

    [9] Tomm J W, Hempel M, Krakowski M, et al. Mechanisms and kinetics of the catastrophic optical damage (COD) of high-power semiconductor lasers[C]// Photonics Society Summer Topical Meeting Series. IEEE, 2012: 51-52.

    [10] Sandroff C J, Nottenburg R N, Bischoff J C, et al. Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation[J]. Appl. Phys. Lett., 1987, 51(1): 33-35.

    [11] Carpenter M S, Melloch M, Lundstrom M S, et al. Effect of Na2S and (NH4)2S edge passivation treatments on the dark current-voltage characteristics of GaAs pn diodes[J]. Appl. Phys. Lett., 1988, 52(25): 2157-2159.

    [12] Fan J F, Oigawa H, Nannichi Y. The effect of (NH4)2S treatment on the interface characteristics of GaAs MIS structures[J]. Jpn. J. of Appl. Phys., 1988, 27(7): L1331-L1333.

    [13] Kawanishi H, Ohno H, Morimoto T, et al. Improvement of high-power characteristics of 780-nm AlGaAs laser diode by (NH4)2S facet treatment[C]// Proc. of SPIE-The International Society for Optical Engineering, 1990: 1219.

    [14] Kamiyama S, Mori Y, Takahashi Y, et al. Improvement of catastrophic optical damage level of AlGaInP visible laser diodes by sulfur treatment[J]. Appl. Phys. Lett., 1991, 58(23): 2595-2597.

    [15] Hou Xiaoyan, Chen Xiying, Li Zheshen, et al. Passivation of GaAs surface by sulfur glow discharge[J]. Appl. Phys. Lett., 1996, 69(10): 1429-1431.

    [16] Lu E D, Zhang F P, Xu S H, et al. A sulfur passivation for GaAs surface by an organic molecular, CH3CSNH2 treatment[J]. Appl. Phys. Lett., 1996, 69(15): 2282-2284.

    [17] Salesse A, Joullie A, Calas P, et al. Surface passivation of GaInAsSb photodiodes with thioacetamide[J]. Phys. Stat. Sol.(C), 2003, 4(4): 1508-1512.

    [19] Broom R F, Gasser M, Harder C S, et al. Method for batch cleaving semiconductor wafers and coating cleaved facet: United States Patent, 5171717[P]. 1992-12-15.

    [20] Chand N, Hamm R A. In-situ technique for cleaving crystals. United States Patent, 5773318[P]. 1998-06-30.

    [21] Lindstrom L, Karsten V, Blixt P N, et al. Method to obtain contamination free laser mirrors and passivation of these: United States Patent, 6812152[P]. 2005-07-14.

    [22] Syrbu A V, Yakovlev V P, Suruceanu G I, et al. ZnSe-facet-passivated InGaAs/InGaAsP/InGaP diode lasers of high CW power and ‘wallplug’ efficiency[C]// Proc. of IEEE Conf. on Lasers & Electro-optics, 1996, 32: 352-353.

    [23] Mawst L J, Bhattacharya A, Nesnidal M, et al. MOVPE-grown high CW power InGaAs/InGaAsP/InGaP diode lasers[J]. J. of Cryst. Growth, 1997, 170(1): 383-389.

    [24] Ressel P, Erbert G, Beister G, et al. Simple but effective passivation process for the mirror facets of high-power semiconductor diode lasers[C]//Proc. of IEEE Conf. on Lasers & Electro-optics Europe, 2004: 145.

    [29] Ladany I, Ettenberg M, Lockwood H F, et al. Al2O3 half-wave films for long-life CW lasers[J]. Appl. Phys. Lett., 1977, 30(2): 87-88.

    [30] Kerps D. Suppression of side lobes in the far field of AlGaAs DH stripe lasers by a Te facet coating[J]. Appl. Phys. Lett., 1979, 35(5): 372-373.

    [31] Tu L W, Schubert E F, Hong M, et al. In-vacuum cleaving and coating of semiconductor laser facets using thin silicon and a dielectric[J]. J. Appl. Phys., 1997, 80(11): 6448-6451.

    [32] Lorch S. Optimization of process parameters for low-absorbing optical coatings fabricated by reactive ion-beam sputter deposition[J]. Annual Report 2004, Optoelectronics Department, University of Ulm.

    [33] Charache G, Hostetler J, Jiang C L, et al. Laser facet passivation: United States Patent, 7687291[P]. 2006-03-27.

    [36] Najda S P. Quantum well intermixing in semiconductor photonic devices: PCT Patent, WO 2004/042801 A2[P]. 2003-10-30.

    [37] Yonezu H, Ueno M, Kamejima T, et al. An AlGaAs window structure laser[J]. IEEE J. Quantum Electron, 1979, 15(8): 775-781.

    [38] Botez D, Connolly J C. Nonabsorbing-mirror (NAM) CDH-LOC diode lasers[J]. Electron. Lett., 1984, 20(13): 530-532.

    [39] Philippe C, Julia A, Virginie M, et al. Non absorbing mirrors for AlGaAs quantum well lasers by impurity-free interdiffusion[J]. Proc.of SPIE-The Inter. Society for Optical Engineering, 1999, 3628: 260-266.

    [40] Yamamura S, Hanamaki Y, Kawasaki K, et al. A very low failure rate of COD free high power 0.98μm laser diode with the window structure[C]// Proc. of IEEE Optical Fiber Communication Conf., 2000.

    [41] Walker C L, Bryce A C, Marsh J H. Improved catastrophic optical damage level from laser with nonabsorbing mirrors[J]. IEEE Photon. Technol. Lett., 2002, 14(10): 1394-1396.

    [43] Tandoi G, Ironside C N, Bryce A C. Nonabsorbing mirrors for quantum-well colliding pulse mode-locked lasers[J]. IEEE Photon. Technol. Lett., 2011, 23(5): 293-295.

    [44] Naito H, Nagakura T, Torii K, et al. Long-term reliability of 915nm broad-area laser diodes under 20W CW operation[J]. IEEE Photon. Technol. Lett., 2015, 27(15): 1041-1135.

    [45] Yun Y S, Kim S H, Ryu H Y, et al. InGaAs/GaAs quantum well intermixing using proton irradiation for non-absorbing mirror[J]. Curr. Appl. Phys., 2016, 16(9): 1005-1008.

    [46] Shibutani T, Kume M, Hamada K, et al. A novel high-power laser structure with current-blocked regions near cavity facets[J]. IEEE J. Quantum Electron., 2003, 23(6): 760-764.

    [47] Sagawa M, Hiramoto K. Advantages of InGaAsP separate confinement layer in 0.98mμm InGaAs/GaAs/InGaP strained DOW lasers for high power operation at high temperature[J]. Electron. Lett., 1992, 28(17): 1639-1640.

    [48] Rinner F, Rogg J, Kelemen M T, et al. Facet temperature reduction by a current blocking layer at the front facets of high-power InGaAs/AlGaAs lasers[J]. J. Appl. Phys., 2003, 93(3): 1848-1850.

    SONG Yue, NING Yongqiang, QIN Li, CHEN Yongyi, ZHANG Jinlong, ZHANG Jun, WANG Lijun. Review on The Methods of Preventing Catastrophic Optical Mirror Damage in High-power Diode Lasers[J]. Semiconductor Optoelectronics, 2020, 41(5): 618
    Download Citation