• Infrared Technology
  • Vol. 42, Issue 10, 917 (2020)
Jianhua XIAO*, Yadong JIANG, Yang WANG, Weizhi LI, and Huiling TAI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    XIAO Jianhua, JIANG Yadong, WANG Yang, LI Weizhi, TAI Huiling. Review of Near-Infrared Polymer Photodiodes[J]. Infrared Technology, 2020, 42(10): 917 Copy Citation Text show less
    References

    [1] DONG H, ZHU H, MENG Q, et al. Organic photoresponse materials and devices[J]. Chem. Soc. Rev., 2012, 41(5): 1754-1808.

    [2] Simone G, Dyson M J, Meskers S C J, et al. Organic photodetectors and their application in large area and flexible image sensors: the role of dark current[J]. Advanced Functional Materials, 2019, 30(20): 1904205.

    [3] Baeg K J, Binda M, Natali D, et al. Organic light detectors: photodiodes and phototransistors[J]. Adv. Mater., 2013, 25(31): 4267-4295.

    [4] Clark J, Lanzani G. Organic photonics for communications[J]. Nature Photonics, 2010, 4(7): 438-446.

    [5] García de Arquer F P, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials, 2017, 2(3): 16100.

    [6] HAN S T, PENG H, SUN Q, et al. An overview of thedevelopment of flexible sensors[J]. Adv. Mater., 2017, 29(33): 1700375.

    [7] Jansen-van Vuuren R D, Armin A, Pandey A K, et al. Organic photodiodes:the future of full color detection and image Sensing[J]. Adv. Mater., 2016,28(24): 4766-4802.

    [8] Kim H, Moon J, Lee K, et al. 3D Printed masks and transfer stamping process to enable the fabrication of the hemispherical organic photodiodes[J]. Advanced Materials Technologies, 2017, 2(9): 1700090.

    [9] Kudo K, Moriizumi T. Spectrum‐controllable color sensors using organic dyes[J]. Applied Physics Letters, 1981, 39(8): 609-611.

    [10] Manna E, Xiao T, Shinar J, et al. Organic photodetectors in analytical applications[J]. Electronics, 2015, 4(3): 688-722.

    [11] Morita S, Zakhidov A A, Yoshino K. Doping effect of buck- minster fullerene in conducting polymer: change of absorption spectrum and quenching of luminescene[J]. Solid State Communications, 1992, 82(4):249-252.

    [12] Sariciftci N S, Braun D, Zhang C, et al. Semiconducting polymerbuckminster fullerene heterojunctions: diodes, photodiodes, and photovoltaic cells[J]. Applied Physics Letters, 1993, 62(6): 585-587.

    [13] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science,1992, 258(5087): 1474-1476.

    [14] SUN Q, DONG G, WANG L, et al. Organic optocouplers[J]. Science China Chemistry, 2011, 54(7): 1017-1026.

    [15] YU G, GAO J, Hummelen J C, et al. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.

    [16] Eckstein R, Strobel N, R?dlmeier T, et al. Fully digitally printed image sensor based on organic photodiodes[J]. Advanced Optical Materials,2018, 6(5): 1701108.

    [17] Eckstein R, R?dlmeier T, Glaser T, et al. Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient[J]. Advanced Electronic Materials, 2015, 1(8): 1500101.

    [18] Saracco E, Bouthinon B, Verilhac J M, et al. Work function tuning for high-performance solution-processed organic photodetectors with inverted structure[J]. Adv. Mater., 2013, 25(45): 6534-6538.

    [19] Azzellino G, Grimoldi A, Binda M, et al. Fully inkjet-printed organic photodetectors with high quantum yield[J]. Adv. Mater., 2013, 25(47):6829-6833.

    [20] Pace G, Grimoldi A, Natali D, et al. All-organic and fully-printed semitransparent photodetectors based on narrow bandgap conjugated molecules[J]. Adv. Mater., 2014, 26(39): 6773-6777.

    [21] Pierre A, Deckman I, Lechene P B, et al. High detectivity all-printed organic photodiodes[J]. Adv. Mater., 2015, 27(41): 6411-6417.

    [22] Falco A, Zaidi A M, Lugli P, et al. Spray deposition of polyethylenimine thin films for the fabrication of fully-sprayed organic photodiodes[J].Organic Electronics, 2015, 23: 186-192.

    [23] QI J, ZHOU X, YANG D, et al. Optimization of solubility, film morphology and photodetector performance by molecular side-chain engineering of low-bandgap thienothiadiazole-based polymers[J].Advanced Functional Materials, 2014, 24(48): 7605-7612.

    [24] Park S, Fukuda K, WANG M, et al. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors[J]. Adv.Mater., 2018, 30(34): 1802359.

    [25] XU H, LIU J, ZHANG J, et al. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring[J/OL]. Adv Mater, 2017, 29(31): 1700975.

    [26] Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin[J]. Sci. Adv., 2016, 2(4): e1501856.

    [27] Bansal A K, Hou S, Kulyk O, et al. Wearable organic optoelectronics ensors for medicine[J]. Adv. Mater., 2015, 27(46): 7638-7644.

    [28] WU Z, ZHAI Y, YAO W, et al. The role of dielectric screening in organic shortwave infrared photodiodes for spectroscopic image sensing[J].Advanced Functional Materials, 2018, 28(50): 1805738.

    [29] Martino N, Ghezzi D, Benfenati F, et al. Organic semiconductors for artificial vision[J]. Journal of Materials Chemistry B, 2013, 1(31): 3768.

    [30] Simone G, Di Carlo Rasi D, de Vries X, et al. Near-infrared tandem organic photodiodes for future application in artificial retinal implants[J].Adv. Mater., 2018, 30(51): e1804678.

    [31] Sargent E H. Solar Cells, Photodetectors, and optical sources from infrared colloidal quantum dots[J]. Advanced Materials, 2008, 20(20):3958-3964.

    [32] Chow P C Y, Someya T. Organic photodetectors for next-generation wearable electronics[J]. Adv. Mater., 2019, 32(15): 1902045.

    [33] GU P, YAO Y, FENG L, et al. Recent advances in polymer phototransistors[J]. Polymer Chemistry, 2015, 6(46): 7933-7944.

    [34] Kumar B, Kaushik B K, Negi Y S. Organic thin film transistors:structures, models, materials, fabrication, and applications: areview[J].Polymer Reviews, 2014, 54(1): 33-111.

    [35] LI Q, GUO Y, LIU Y. Exploration of near-infrared organic photodetectors[J]. Chemistry of Materials, 2019, 31(17): 6359-6379.

    [36] Alvarado S, Seidler P, Lidzey D, et al. Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope[J]. Physical Review Letters, 1998, 81(5):1082-1085.

    [37] Kippelen B, Brédas J-L. Organic photovoltaics[J]. Energy & Environmental Science, 2009, 2(3): 251.

    [38] Menke S M, Holmes R J. Exciton diffusion in organic photovoltaic cells[J]. Energy Environ. Sci., 2014, 7(2): 499-512.

    [39] Vezie M S, Few S, Meager I, et al. Exploring the origin of high optical absorption in conjugated polymers[J]. Nat. Mater., 2016, 15(7): 746-753.

    [40] Chow P C, Bayliss S L, Lakhwani G, et al. In situ optical measurement of charge transport dynamics in organic photovoltaics[J]. Nano Lett, 2015,15(2): 931-935.

    [41] Yu G, Pakbaz K, Heeger A J. Semiconducting polymer diodes: large size,low cost photodetectors with excellent visible-ultraviolet sensitivity[J].Applied Physics Letters, 1994, 64(25): 3422-3424.

    [42] Abdullah S M, Rafique S, Azmer M I, et al. Modified photo-current response of an organic photodiode by using V2O5 in both hole and electron transport layers[J]. Sensors and Actuators A: Physical, 2018,272: 334-340.

    [43] CHEN X, XU Z, PENG Y, et al. Enhanced performance of near infrared and broad spectral response organic photodiodes exploiting NPB as electron blocking layer[J]. Infrared Physics & Technology, 2019, 102:103001.

    [44] Vandewal K. Interfacial charge transfer states in condensed phase systems[J]. Annu Rev. Phys. Chem., 2016, 67: 113-133.

    [45] YAO Y, LIANG Y, Shrotriya V, et al. Plastic near-infrared photodetectors utilizing low band gap polymer[J]. Advanced Materials, 2007, 19(22):3979-3983.

    [46] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene[J].Nature, 1985, 318(6042): 162-163.

    [47] GONG X, TONG M, XIA Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science,2009, 325(5948): 1665-1667.

    [48] Matthew Menke S, Pandey R, Holmes R J. Tandem organic photodetectors with tunable, broadband response[J]. Applied Physics Letters,2012, 101(22): 223301.

    [49] Koppe M, Egelhaaf H-J, Clodic E, et al. Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer[J]. Advanced Energy Materials, 2013, 3(7):949-958.

    [50] XIA Y, WANG L, DENG X, et al. Photocurrent response wavelength up to 1.1 ?m from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative[J]. Applied Physics Letters, 2006, 89(8):081106.

    [51] Hendriks K H, LI W, Wienk M M, et al. Small-bandgap semiconducting polymers with high near-infrared photoresponse[J]. J. Am. Chem. Soc.,2014, 136(34): 12130-12136.

    [52] DOU L, LIU Y, HONG Z, et al. Low-bandgap near-IR conjugated polymers/molecules for organic electronics[J]. Chem. Rev., 2015,115(23): 12633-12665.

    [53] HAN J, QI J, ZHENG X, et al. Low-bandgap donor–acceptor polymers for photodetectors with photoresponsivity from 300 nm to 1600 nm[J].Journal of Materials Chemistry C, 2017, 5(1): 159-165.

    [54] HAN J, YANG D, MA D, et al. Low-bandgap polymers for high-performance photodiodes with maximal EQE near 1200 nm and broad spectral response from 300 to 1700 nm[J]. Advanced Optical Materials,2018, 6(15): 1800038.

    [55] ZHENG L, ZHU T, XU W, et al. Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 ?m by a low bandgap donor–acceptor conjugated copolymer[J]. Journal of Materials Chemistry C, 2018, 6(14): 3634-3641.

    [56] Gasparini N, Salvador M, Strohm S, et al. Burn-in free nonfullerene-based organic solar cells[J]. Advanced Energy Materials, 2017, 7(19):1700770.

    [57] Kim I K, Li X, Ullah M, et al. High-performance, fullerene-free organic photodiodes based on a solution-processable indigo[J]. Adv. Mater., 2015,27(41): 6390-6395.

    [58] Lee J, Ko S-J, Lee H, et al. Side-chain engineering of nonfullerene acceptors for near-infrared organic photodetectors and photovoltaics[J].ACS Energy Letters, 2019, 4(6): 1401-1409.

    [59] Murto P, Genene Z, Benavides C M, et al. High performance all-polymer photodetector comprising a donor–acceptor–acceptor structured indacenodithiophene–bithieno[3,4-c] pyrroletetrone copolymer[J]. ACS Macro Letters, 2018, 7(4): 395-400.

    [60] Strobel N, Seiberlich M, Rodlmeier T, et al. Non-fullerene-based printed organic photodiodes with high responsivity and megahertz detection speed[J]. ACS Appl. Mater. Interfaces, 2018, 10(49): 42733-42739.

    [61] Gasparini N, Gregori A, Salvador M, et al. Visible and near-Infrared imaging with nonfullerene-based photodetectors[J]. Advanced Materials Technologies, 2018, 3(7): 1800104.

    [62] LI W, XU Y, MENG X, et al. Visible to near-infrared photodetection based on ternary organic heterojunctions[J]. Advanced Functional Materials, 2019, 29(20): 1808948.

    [63] DONG C, LIU S, Barange N, et al. Long-wavelength lead sulfide quantum dots sensing up to 2600 nm for short-wavelength infrared photodetectors[J]. ACS Appl Mater Interfaces, 2019, 11(47):44451-44457.

    [64] DONG R, BI C, DONG Q, et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain[J]. Advanced Optical Materials,2014, 2(6): 549-554.

    [65] Itskos G, Othonos A, Rauch T, et al. Optical properties of organic semiconductor blends with near-infrared quantum-dot sensitizers for light harvesting applications[J]. Advanced Energy Materials, 2011, 1(5):802-812.

    [66] Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.

    [67] McDonald S A, Konstantatos G, ZHANG S, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nat.Mater., 2005, 4(2): 138-142.

    [68] Rauch T, B?berl M, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009,3(6): 332-336.

    [69] YANG C-M, Tsai P-Y, Horng S-F, et al. Infrared photocurrent response of charge-transfer exciton in polymer bulk heterojunction[J]. Applied Physics Letters, 2008, 92(8): 083504.

    [70] Armin A, Jansen-van Vuuren R D, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes[J]. Nat. Commun., 2015, 6: 6343.

    [71] Siegmund B, Mischok A, Benduhn J, et al. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption[J]. Nat. Commun., 2017, 8: 15421.

    [72] Kim J, Yoon S, Sim K M, et al. Rational design of a junction structure to realize an NIR-selective narrowband organic thin-film photodiode[J].Journal of Materials Chemistry C, 2019, 7(16): 4770-4777.

    [73] Kim H, Song B, Lee K, et al. Bilayer interdiffused heterojunction organic photodiodes fabricated by double transfer stamping[J]. Advanced Optical Materials, 2017, 5(3): 1600784.

    [74] Kim H, Song B, Lee K, et al. High-performance PBT7-Th:PC70BM polymer photodiode with transferred charge blocking layers[J]. Organic Electronics, 2018, 62: 566-571.

    XIAO Jianhua, JIANG Yadong, WANG Yang, LI Weizhi, TAI Huiling. Review of Near-Infrared Polymer Photodiodes[J]. Infrared Technology, 2020, 42(10): 917
    Download Citation