• Study On Optical Communications
  • Vol. 48, Issue 4, 17 (2022)
Xue-lu DENG and Da-qin PENG*
Author Affiliations
  • School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    DOI: 10.13756/j.gtxyj.2022.04.004 Cite this Article
    Xue-lu DENG, Da-qin PENG. Improved Recurrent Neural Network based BP Decoding Algorithm for Polar Codes[J]. Study On Optical Communications, 2022, 48(4): 17 Copy Citation Text show less
    References

    [1] ArikanE. Channel Polarization: A Method for Constructing Capacity-achieving Codes[C]//2008 IEEE International Symposium on Information Theory. Toronto, ON, Canada: IEEE, 2008: 4595172.

    [2] NiuK, ChenK. CRC-aided Decoding of Polar Codes[J]. IEEE Communications Letters, 2012, 16(10):1668-1671.

    [3] TalI, VardyA. List Decoding of Polar Codes[J]. IEEE Transactions on Information Theory, 2015, 61(5):2213-2226.

    [4] YuanB, ParhiK K. Architecture Optimizations for BP Polar Decoders[C]//IEEE International Conference on Acoustics. Vancouver, BC, Canada: IEEE, 2013: 6638137.

    [5] YuanB, ParhiK K. Early Stopping Criteria for Energy-Efficient Low-Latency Belief-Propagation Polar Code Decoders[J]. IEEE Transactions on Signal Processing, 2014, 62(24):6496-6506.

    [6] XuW, WuZ, UengY L, et al. Improved Polar Decoder based on Deep Learning[C]//2017 IEEE International Workshop on Signal Processing Systems(SiPS). Lorient, France: IEEE, 2017: 8109997.

    [7] NachmaniE, MarcianoE, LugoschL, et al. Deep Learning Methods for Improved Decoding of Linear Codes[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1):119-131.

    [8] TengC F, WuD C H, HoK S A, et al. Low Complexity Recurrent Neural Network-based Polar Decoder with Weight Quantization Mechanism[C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Brighton, U K: IEEE, 2019: 8683778.

    [9] DoanN, HashemiS A, MambouE N, et al. Neural Belief Propagation Decoding of CRC-Polar Concatenated Codes[C]//2019 IEEE International Conference on Communications(ICC). Shanghai, China: IEEE, 2019: 8761399.

    [11] ArikanE. Channel Polarization:A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels[J]. IEEE Transactions on Information Theory, 2009, 55(7):3051-3073.

    [12] WodianyI, PopA. Low-Precision Neural Network Decoding of Polar Codes[C]//2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC). Cannes, France: IEEE, 2019: 8815542.

    [13] LugoschL, GrossW J. Neural Offset Min-Sum Decoding[C]//2017 IEEE International Symposium on Information Theory(ISIT). Aachen, Germany: IEEE, 2017: 8006751.

    [14] SunY, ShenY, SongW, et al. LST M Network-Assisted Belief Propagation Flip Polar Decoder[C]//2020 54th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA: IEEE, 2020: 9443504.

    [15] TengC, HoA K, WuC D, et al. Convolutional Neural Network-Aided Bit-Flipping for Belief Propagation Decoding of Polar Codes[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Toronto, ON, Canada: IEEE, 2021: 9413808.

    Xue-lu DENG, Da-qin PENG. Improved Recurrent Neural Network based BP Decoding Algorithm for Polar Codes[J]. Study On Optical Communications, 2022, 48(4): 17
    Download Citation