• High Power Laser Science and Engineering
  • Vol. 4, Issue 2, 02000e15 (2016)
David C. Brown1, Sten Torneg?rd1, and Joseph Kolis2
Author Affiliations
  • 1Snake Creek Lasers, LLC, 26741 State Route 267, Friendsville, PA 18818, USA
  • 2Clemson University, Department of Chemistry, Clemson, SC, USA
  • show less
    DOI: 10.1017/hpl.2016.12 Cite this Article Set citation alerts
    David C. Brown, Sten Torneg?rd, Joseph Kolis. Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications[J]. High Power Laser Science and Engineering, 2016, 4(2): 02000e15 Copy Citation Text show less
    Thermal conductivity for $\text{Al}_{2}\text{O}_{3}$ as a function of temperature for the $c$-axis (green circles) and the $a$-axis (blue squares); also shown are the thermal expansion coefficient values for the $c$-axis (pink triangles) and the $a$-axis (red squares).
    Fig. 1. Thermal conductivity for $\text{Al}_{2}\text{O}_{3}$ as a function of temperature for the $c$-axis (green circles) and the $a$-axis (blue squares); also shown are the thermal expansion coefficient values for the $c$-axis (pink triangles) and the $a$-axis (red squares).
    YAG thermal conductivity (blue diamonds), thermal expansion coefficient (red squares) and $(dn/dT)$ (green triangles) as a function of absolute temperature.
    Fig. 2. YAG thermal conductivity (blue diamonds), thermal expansion coefficient (red squares) and $(dn/dT)$ (green triangles) as a function of absolute temperature.
    LuAG thermal conductivity (red squares), thermal expansion coefficient (blue diamonds) and $(dn/dT)$ (green triangles) as a function of absolute temperature.
    Fig. 3. LuAG thermal conductivity (red squares), thermal expansion coefficient (blue diamonds) and $(dn/dT)$ (green triangles) as a function of absolute temperature.
    YLF thermal conductivity along $a$-axis (blue diamonds) and $c$-axis (green triangles), thermal expansion coefficient along $a$-axis (red squares) and $c$-axis (black diamonds), and $(dn/dT)$ along the $a$-axis (pink circles) and the $c$-axis (orange circles), all as a function of absolute temperature.
    Fig. 4. YLF thermal conductivity along $a$-axis (blue diamonds) and $c$-axis (green triangles), thermal expansion coefficient along $a$-axis (red squares) and $c$-axis (black diamonds), and $(dn/dT)$ along the $a$-axis (pink circles) and the $c$-axis (orange circles), all as a function of absolute temperature.
    LuLF thermal conductivity along $a$-axis (blue diamonds) and $c$-axis (green triangles), thermal expansion coefficient along $a$-axis (red squares) and $c$-axis (black triangles), and $(dn/dT)$ along the $a$-axis (pink circles) and the $c$-axis (orange circles), all as a function of absolute temperature.
    Fig. 5. LuLF thermal conductivity along $a$-axis (blue diamonds) and $c$-axis (green triangles), thermal expansion coefficient along $a$-axis (red squares) and $c$-axis (black triangles), and $(dn/dT)$ along the $a$-axis (pink circles) and the $c$-axis (orange circles), all as a function of absolute temperature.
    YALO thermal conductivity along $a$-axis (blue diamonds), $b$-axis (red squares) and $c$-axis (green triangles), thermal expansion coefficient along the $a$-axis (black crosses), $b$-axis (blue squares) and $c$-axis (long dashes), and $(dn/dT)$ along the $a$-axis (light blue diamonds), $b$-axis (short dashes) and $c\text{-}\text{axis}(\text{pink}~\text{triangles})$, all as a function of absolute temperature.
    Fig. 6. YALO thermal conductivity along $a$-axis (blue diamonds), $b$-axis (red squares) and $c$-axis (green triangles), thermal expansion coefficient along the $a$-axis (black crosses), $b$-axis (blue squares) and $c$-axis (long dashes), and $(dn/dT)$ along the $a$-axis (light blue diamonds), $b$-axis (short dashes) and $c\text{-}\text{axis}(\text{pink}~\text{triangles})$, all as a function of absolute temperature.
    $\text{Y}_{2}\text{O}_{3}$ thermal conductivity (red circles), thermal expansion coefficient (blue diamonds) and $(dn/dT)$ (green triangles) as a function of absolute temperature.
    Fig. 7. $\text{Y}_{2}\text{O}_{3}$ thermal conductivity (red circles), thermal expansion coefficient (blue diamonds) and $(dn/dT)$ (green triangles) as a function of absolute temperature.
    $\text{Sc}_{2}\text{O}_{3}$ thermal conductivity (blue circles), thermal expansion coefficient (green diamonds) and $(dn/dT)$ (red squares) as a function of absolute temperature.
    Fig. 8. $\text{Sc}_{2}\text{O}_{3}$ thermal conductivity (blue circles), thermal expansion coefficient (green diamonds) and $(dn/dT)$ (red squares) as a function of absolute temperature.
    $\text{GdVO}_{4}$ thermal conductivity along $a$-axis (blue diamonds) and $c$-axis (green triangles), thermal expansion coefficient along $a$-axis (black triangles) and $c$-axis (red triangles), and $(dn/dT)$ along the $a$-axis (orange circles) and the $c$-axis (pink squares), all as a function of absolute temperature.
    Fig. 9. $\text{GdVO}_{4}$ thermal conductivity along $a$-axis (blue diamonds) and $c$-axis (green triangles), thermal expansion coefficient along $a$-axis (black triangles) and $c$-axis (red triangles), and $(dn/dT)$ along the $a$-axis (orange circles) and the $c$-axis (pink squares), all as a function of absolute temperature.
    $\text{CaF}_{2}$ thermal conductivity (red squares, blue diamonds and pink circles), thermal expansion coefficient green triangles) and $(dn/dT)$ (black circles) as a function of absolute temperature.
    Fig. 10. $\text{CaF}_{2}$ thermal conductivity (red squares, blue diamonds and pink circles), thermal expansion coefficient green triangles) and $(dn/dT)$ (black circles) as a function of absolute temperature.
    Number of waves distortion per unit output power for Yb:YAG at 300 (blue line) and 77 K (red line), and the ratio of the number of waves at 300 to 77 K pink), all as a function of laser extraction efficiency.
    Fig. 11. Number of waves distortion per unit output power for Yb:YAG at 300 (blue line) and 77 K (red line), and the ratio of the number of waves at 300 to 77 K pink), all as a function of laser extraction efficiency.
    Temporal repetitively diode-pumped sequence showing pump pulses of duration $T$, repetition rate ${\it\nu}_{R}$, the temporal variation of the initial inversion density $n_{i}$ and the inversion from a previous pulse $n_{\text{fp}}$, and the difference inversion density ${\rm\Delta}n$ due to extraction.
    Fig. 12. Temporal repetitively diode-pumped sequence showing pump pulses of duration $T$, repetition rate ${\it\nu}_{R}$, the temporal variation of the initial inversion density $n_{i}$ and the inversion from a previous pulse $n_{\text{fp}}$, and the difference inversion density ${\rm\Delta}n$ due to extraction.
    Schematic diagram of the Thor-300 Cryo Amplifier system; the gray boxes represent copper heat sinks that are coupled to closed-cycle cryogenic coolers, the disks are shown on opposite faces of the heat sinks. Green arrows represent 940 nm pump beams used to optically pump the disks, A more detailed description may be found in the text.
    Fig. 13. Schematic diagram of the Thor-300 Cryo Amplifier system; the gray boxes represent copper heat sinks that are coupled to closed-cycle cryogenic coolers, the disks are shown on opposite faces of the heat sinks. Green arrows represent 940 nm pump beams used to optically pump the disks, A more detailed description may be found in the text.
    Thor-300 Yb:YAG pump chamber showing entrance window, vacuum, window, and mounting flanges, and a pulse-tube He closed-cycle cryocooler mounted on top.
    Fig. 14. Thor-300 Yb:YAG pump chamber showing entrance window, vacuum, window, and mounting flanges, and a pulse-tube He closed-cycle cryocooler mounted on top.
    Evolution of the energy/pulse in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Fig. 15. Evolution of the energy/pulse in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Evolution of the intensity in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Fig. 16. Evolution of the intensity in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Evolution of the intensity (blue line) in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. Also shown is the laser damage threshold for each optical element (red line). The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Fig. 17. Evolution of the intensity (blue line) in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. Also shown is the laser damage threshold for each optical element (red line). The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Evolution of the energy/pulse in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Fig. 18. Evolution of the energy/pulse in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Evolution of the intensity in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Fig. 19. Evolution of the intensity in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Evolution of the intensity (blue line) in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. Also shown is the laser damage threshold for each optical element (red line). The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Fig. 20. Evolution of the intensity (blue line) in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. Also shown is the laser damage threshold for each optical element (red line). The pump pulse duration is $500~{\rm\mu}\text{s}$. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.
    Elastic parameters$E_{0}$ (0 K)$a$ ($10^{-4}/\text{K}$)$E$ (300 K)$B_{0}$ (0 K)$b$ ($10^{-4}/\text{K}$)$B$ (300 K)${\it\nu}$
    (GPa)(GPa)(GPa)(GPa)
    $\text{Al}_{2}\text{O}_{3}$3931.333772410.842350.23
    CaF 1100.30
    $\text{Lu}_{2}\text{O}_{3}$2041.031981610.241600.29
    $\text{MgAl}_{2}\text{O}_{4}$2781.982621871.971760.25
    MgO 310 1.63 295 164 1.23 1580.19
    $\text{Sc}_{2}\text{O}_{3}$2291.222211480.981440.24
    $\text{Y}_{2}\text{O}_{3}$1761.371691471.931390.30
    YAG 3020.24
    YbAG 2570.25
    $\text{LiYF}_{4}$770.33
    Table 1. Young’s modulus, bulk modulus and Poisson’s ratio for selected laser materials (from Ref. [3]).
    Crystal$k$${\it\alpha}$ ($10^{-6}$)${\it\beta}$ ($10^{-6}$)${\it\eta}_{h}^{\text{QD}}$${\it\nu}$$E$ ($10^{9}$)${\rm\Gamma}_{T}$ ($10^{10}$)${\rm\Gamma}_{S}$ ($10^{-5}$)${\rm\Gamma}$$T$
    ($\text{W}/(\text{cm}\text{-}\text{K})$)($1/\text{K}$)($1/\text{K}$)($\text{g}/\text{cm}^{2}$)$(\text{W}\text{-}\text{K})/\text{cm}$$(\text{W}\text{-}\text{cm})/\text{g}$$(\text{W}\text{-}\text{cm})/\text{g}$(K)
    YAG0.1126.147.800.0860.24 3.0802.725.236.71300
    0.4611.950.900.0860.24 3.080 305.4467.83753.7100
    LuAG0.0836.138.300.0860.25 2.8721.904.114.95300
    0.2542.460.700.0860.25 2.872 171.531.35447.86100
    YLF-$a$0.05310.05$-4.60$0.0450.330.7852.5510.0021.74300
    0.2423.18$-0.50$0.0450.330.785338.23144.34453.93100
    YLF-$c$0.07214.31$-6.60$0.0450.330.7851.699.5414.45300
    0.3372.36$-1.80$0.0450.330.785176.29270.811504.50100
    YALO-$a$0.1172.327.700.0960.233.2206.8212.5616.31300
    0.649$-1.16$1.000.0960.233.220582.79139.361393.60100
    YALO-$b$0.1008.0811.700.0960.233.2201.103.082.63300
    0.5443.244.500.0960.23 3.220 388.6641.8292.93100
    YALO-$c$0.1338.708.300.0960.233.2201.923.814.59300
    0.7763.001.200.0960.23 3.220 224.5464.43536.92100
    $\text{Lu}_{2}\text{O}_{3}$0.1146.107.1*0.0800.292.0193.298.2211.58300
    0.3402.902.3*0.0800.29 2.01963.7251.54224.09100
    $\text{Sc}_{2}\text{O}_{3}$0.1476.408.120.0880.242.2543.218.8010.84300
    0.4550.752.200.0880.24 2.254 313.36 265.661207.55100
    $\text{Y}_{2}\text{O}_{3}$0.1306.306.080.0740.301.7234.5911.3318.64300
    0.5200.902.400.0740.30 1.723 325.33 156.86653.58100
    $\text{CaF}_{2}$0.08019.20$-12.70$0.0910.301.1220.362.862.25300
    0.390 10.60$-7.5$*0.0910.301.1225.3225.2223.79100
    $\text{Al}_{2}\text{O}_{3}$-$c$0.3305.159.800.3350.233.8441.953.833.91300
    5.1500.714.050.3350.23 3.844 534.62 433.721070.91100
    $\text{Al}_{2}\text{O}_{3}$-$a$0.3605.9312.800.3350.233.8441.423.632.84300
    3.4400.901.900.3350.23 3.844 600.51 228.551202.89100
    Table 2. Thermal conductivity $k$, thermal expansion coefficient ${\it\alpha}$, thermo-optic coefficient ${\it\beta}$, quantum-defect heat fraction ${\it\eta}_{h}^{\text{QD}}$, Poisson’s ratio ${\it\nu}$, Young’s modulus $E$, and calculated figures of merit ${\rm\Gamma}_{T}$, ${\rm\Gamma}_{S}$ and ${\rm\Gamma}$ for selected laser crystals at 100 and 300 K. Absolute values of negative parameter values were used to calculate figures of merit. Table is reproduced from Ref. [3].
    CrystalCrystal${\it\delta}{\it\lambda}_{\text{abs}}$ (FWHM)${\rm\Delta}{\it\lambda}_{\text{abs}}$${\it\sigma}_{\text{abs}}^{P}$${\it\lambda}_{\text{em}}^{P}$${\rm\Delta}{\it\lambda}_{\text{em}}$${\it\sigma}_{\text{em}}^{P}$${\it\tau}_{F}$Temp.References
    type${\it\lambda}_{\text{abs}}^{P}$ (nm)(FWHM)($\text{cm}^{2}$)(nm)(FWHM)($\text{cm}^{2}$)(${\rm\mu}\text{s}$)(K)
    (nm) ($10^{-20}$)(nm)($10^{-20}$)
    $\begin{array}{@{}l@{}}\text{Ti}^{3+}\text{:}\text{Al}_{2}\text{O}_{3}\\ E\Vert c~({\rm\pi})\end{array}$U$\begin{array}{@{}c@{}}455{-}580\\ 493\end{array}$120.06.45790225.03.03.2300[37, 38]
    $\begin{array}{@{}l@{}}\text{Ti}^{3+}\text{:}\text{Al}_{2}\text{O}_{3}\\ E\Vert a~({\it\sigma})\end{array}$U$\begin{array}{@{}c@{}}455{-}575\\ 493\end{array}$122.02.79800236.01.53.2300[37, 38]
    $\begin{array}{@{}l@{}}\text{Cr}^{3+}\text{:LiSAF}\\ E\Vert c\end{array}$U$\begin{array}{@{}c@{}}600{-}703\\ 637\end{array}$97.75.4850192.04.867300[39]
    $\begin{array}{@{}l@{}}\text{Cr}^{3+}\text{:LiSAF}\\ E\Vert a\end{array}$U$\begin{array}{@{}c@{}}593{-}693\\ 637\end{array}$102.32.6850171.41.667300[39]
    $\begin{array}{@{}l@{}}\text{Cr}^{3+}\text{:LiCAF}\\ E\Vert c\end{array}$U$\begin{array}{@{}c@{}}585{-}680\\ 647\end{array}$85.82.95763127.01.3175300[39]
    $\begin{array}{@{}l@{}}\text{Cr}^{3+}\text{:LiCAF}\\ E\Vert a\end{array}$U$\begin{array}{@{}c@{}}580{-}680\\ 647\end{array}$92.72.00763127.00.9175300[39]
    $\text{Yb}^{3+}\text{:BOYS}$A$\begin{array}{@{}c@{}}972{-}978\\ 975\end{array}$6.00.90106260.00.431100300[40, 41]
    $\text{Yb}^{3+}\text{:CaF}_{2}$A$\begin{array}{@{}c@{}}915{-}970\\ 979\end{array}$$\begin{array}{@{}c@{}}53.3\\ 21.8\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.83\\ \phantom{0}0.57\end{array}$103026.70.251900300[42]
    $\text{Yb}^{3+}\text{:CaF}_{2}$A$\begin{array}{@{}c@{}}915{-}970\\ 980\end{array}$$\begin{array}{@{}c@{}}53.3\\ \phantom{00}2.93\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.88\\ \phantom{0}1.57\end{array}$$\begin{array}{@{}c@{}}1033\\ 990\end{array}$$\begin{array}{@{}c@{}}43.3\\ 10.7\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.50\\ \phantom{0}0.83\end{array}$190077[42]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:CALGO}\\ E\Vert c~({\rm\pi})\end{array}$U$\begin{array}{@{}c@{}}974{-}984\\ 979\end{array}$6.602.71040800.25420300[43, 44]*
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:CALGO}\\ E\Vert a~({\it\sigma})\end{array}$U$\begin{array}{@{}c@{}}974{-}984\\ 979\end{array}$7.901.01040800.75420300[43, 44]*
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:GdCOB}\\ E\Vert Z\end{array}$B$\begin{array}{@{}c@{}}902\\ 949\\ 976\end{array}$$\begin{array}{@{}c@{}}13.5\\ 10.8\\ \phantom{0}2.4\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.48\\ \phantom{0}0.13\\ \phantom{0}1.10\end{array}$$\begin{array}{@{}c@{}}976\\ 1003\\ 1032\\ 1070\end{array}$$\begin{array}{@{}c@{}}4.1\\ 18.9\\ 27.0\\ 32.4\end{array}$$\begin{array}{@{}c@{}}0.5\\ 0.3\\ 0.6\\ 0.2\end{array}$2440300[45]*
    $\text{Yb}^{3+}$:GSOB$\begin{array}{@{}c@{}}889{-}981\\ 897\\ 922\\ 940\\ 976\end{array}$$\begin{array}{@{}c@{}}17.0\\ 26.0\\ 24.0\\ 10.0\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.33\\ \phantom{0}0.60\\ \phantom{0}0.39\\ \phantom{0}0.51\end{array}$$\begin{array}{@{}c@{}}1011\\ 1030\\ 1047\\ 1080\end{array}$72$\begin{array}{@{}c@{}}\phantom{0}0.27\\ \phantom{0}0.18\\ \phantom{0}0.34\\ \phantom{0}0.27\\ \phantom{0}0.46\end{array}$1560300[46]*
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:KGW}\\ E\Vert a\end{array}$B$\begin{array}{@{}c@{}}927{-}983\\ 934\\ 981\end{array}$$\begin{array}{@{}c@{}}14.0\\ \phantom{0}3.2\end{array}$$\begin{array}{@{}c@{}}3.0\\ 12.0\phantom{0}\end{array}$$\begin{array}{@{}c@{}}988\\ 1000\\ 1025\end{array}$$\begin{array}{@{}c@{}}6.6\\ 12.0\\ 13.8\end{array}$$\begin{array}{@{}c@{}}15.1\phantom{0}\\ 8.1\\ 2.8\end{array}$243300[47]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:KGW}\\ E\Vert b\end{array}$B$\begin{array}{@{}c@{}}939{-}982\\ 952\\ 979\end{array}$$\begin{array}{@{}c@{}}25.5\\ \phantom{0}5.1\end{array}$$\begin{array}{@{}c@{}}2.0\\ 2.0\end{array}$$\begin{array}{@{}c@{}}981\\ 1001\\ 1031\end{array}$$\begin{array}{@{}c@{}}9.0\\ 15.1\\ 18.0\end{array}$$\begin{array}{@{}c@{}}3.3\\ 2.6\\ 2.1\end{array}$243300[47]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:KGW}\\ E\Vert c\end{array}$B$\begin{array}{@{}c@{}}946{-}982\\ 953\\ 979\end{array}$$\begin{array}{@{}c@{}}14.0\\ \phantom{0}5.1\end{array}$$\begin{array}{@{}c@{}}0.8\\ 2.0\end{array}$$\begin{array}{@{}c@{}}981\\ 1001\\ 1024\end{array}$$\begin{array}{@{}c@{}}7.8\\ 12.0\\ 21.1\end{array}$$\begin{array}{@{}c@{}}2.5\\ 1.2\\ 0.8\end{array}$243300[47]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:KYW}\\ E\Vert a\end{array}$B$\begin{array}{@{}c@{}}928{-}983\\ 934\\ 954\\ 981\end{array}$$\begin{array}{@{}c@{}}12.1\\ 20.2\\ \phantom{0}3.4\end{array}$$\begin{array}{@{}c@{}}2.9\\ 1.3\\ 13.1\phantom{0}\end{array}$$\begin{array}{@{}c@{}}937\\ 1006\\ 1032\end{array}$$\begin{array}{@{}c@{}}7.8\\ 8.6\\ 8.6\end{array}$$\begin{array}{@{}c@{}}15.6\phantom{0}\\ 3.4\\ 2.2\end{array}$233300[47]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:KYW}\\ E\Vert b\end{array}$B$\begin{array}{@{}c@{}}928{-}984\\ 933\\ 952\\ 980\end{array}$$\begin{array}{@{}c@{}}\phantom{0}9.4\\ 19.5\\ \phantom{0}7.4\end{array}$$\begin{array}{@{}c@{}}1.9\\ 3.5\\ 2.8\end{array}$$\begin{array}{@{}c@{}}982\\ 1002\\ 1032\end{array}$$\begin{array}{@{}c@{}}8.6\\ 17.2\\ 22.4\end{array}$$\begin{array}{@{}c@{}}8.5\\ 2.9\\ 1.4\end{array}$233300[47]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:KYW}\\ E\Vert c\end{array}$B$\begin{array}{@{}c@{}}925{-}984\\ 932\\ 952\\ 979\end{array}$$\begin{array}{@{}c@{}}13.5\\ 13.5\\ 10.1\end{array}$$\begin{array}{@{}c@{}}1.0\\ 0.8\\ 2.0\end{array}$$\begin{array}{@{}c@{}}982\\ 1000\\ 1024\end{array}$$\begin{array}{@{}c@{}}15.5\\ 31.0\\ 25.9\end{array}$$\begin{array}{@{}c@{}}28.0\phantom{0}\\ 2.2\\ 0.7\end{array}$233300[47]
    $\text{Yb}^{3+}\text{:LSO}$B$\begin{array}{@{}c@{}}894{-}985\\ 900\\ 924\\ 977\end{array}$$\begin{array}{@{}c@{}}13.0\\ 25.0\\ 15.0\end{array}$$\begin{array}{@{}c@{}}\phantom{00}0.21\\ \phantom{00}0.36\\ \phantom{00}1.30\end{array}$$\begin{array}{@{}c@{}}1004\\ 1012\\ 1032\\ 1055\\ 1083\end{array}$73$\begin{array}{@{}c@{}}\phantom{0}0.34\\ \phantom{0}0.32\\ \phantom{0}0.33\\ \phantom{0}0.21\\ \phantom{0}0.14\end{array}$1680300[46]*
    $\text{Yb}^{3+}\text{:}\text{Lu}_{2}\text{O}_{3}$A$\begin{array}{@{}c@{}}899{-}977\\ 903\\ 950\\ 976\end{array}$$\begin{array}{@{}c@{}}\phantom{0}8.1\\ 12.1\\ \phantom{0}4.0\end{array}$$\begin{array}{@{}c@{}}\phantom{0}1.1\\ \phantom{0}1.4\\ \phantom{0}3.1\end{array}$$\begin{array}{@{}c@{}}976\\ 1033\\ 1078\end{array}$$\begin{array}{@{}c@{}}4.1\\ 14.2\\ 12.1\end{array}$$\begin{array}{@{}c@{}}3.3\\ 1.9\\ 0.9\end{array}$820300[48, 49]
    $\text{Yb}^{3+}\text{:LuAG}$A$\begin{array}{@{}c@{}}913{-}972\\ 917\\ 941\\ 970\end{array}$$\begin{array}{@{}c@{}}\phantom{0}8.5\\ 21.3\\ \phantom{0}3.2\end{array}$$\begin{array}{@{}c@{}}\phantom{00}0.61\\ \phantom{00}0.95\\ \phantom{00}1.02\end{array}$10303.42.50950295[48, 50]
    $\text{Yb}^{3+}\text{:LuAG}$A$\begin{array}{@{}c@{}}916{-}970\\ 917\\ 941\\ 969\end{array}$$\begin{array}{@{}c@{}}\phantom{00}2.8\\ \phantom{00}4.8\\ \phantom{00}1.2\end{array}$$\begin{array}{@{}c@{}}\phantom{00}1.35\\ \phantom{00}1.80\\ \phantom{00}2.50\end{array}$10301.113.90950100[48, 51]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:LSB}\\ E\Vert c~({\rm\pi})\end{array}$U$\begin{array}{@{}c@{}}894{-}975\\ 899\\ 938\\ 971\end{array}$$\begin{array}{@{}c@{}}11.0\\ 40.4\\ \phantom{0}7.4\end{array}$$\begin{array}{@{}c@{}}\phantom{00}0.30\\ \phantom{00}0.14\\ \phantom{00}0.37\end{array}$$\begin{array}{@{}c@{}}938\\ 988\\ 1042\end{array}$36$\begin{array}{@{}c@{}}\phantom{0}0.33\\ \phantom{0}0.29\\ \phantom{0}0.28\end{array}$1150300[52]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:LSB}\\ E\Vert a~({\it\sigma})\end{array}$U$\begin{array}{@{}c@{}}894{-}992\\ 899\\ 939\\ 980\end{array}$$\begin{array}{@{}c@{}}11.0\\ \text{—}\\ 23.3\end{array}$$\begin{array}{@{}c@{}}\phantom{00}0.20\\ \text{—}\\ \phantom{00}0.96\end{array}$$\begin{array}{@{}c@{}}1080\\ 988\\ 980\end{array}$55$\begin{array}{@{}c@{}}\phantom{0}0.16\\ \text{—}\\ \phantom{0}0.12\end{array}$1150300[52]
    $\text{Yb}^{3+}\text{:Sc}_{2}\text{O}_{3}$A$\begin{array}{@{}c@{}}890{-}977\\ 893\\ 942\\ 976\end{array}$$\begin{array}{@{}c@{}}\phantom{0}6.9\\ 23.8\\ \phantom{0}2.3\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.6\\ \phantom{0}1.0\\ \phantom{0}4.4\end{array}$$\begin{array}{@{}c@{}}1041\\ 1095\end{array}$$\begin{array}{@{}c@{}}13.4\\ 10.7\end{array}$$\begin{array}{@{}c@{}}\phantom{0}1.44\\ \phantom{0}0.33\end{array}$800300[51]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:S-FAP}\\ E\Vert c~({\rm\pi})\end{array}$U$\begin{array}{@{}c@{}}898{-}937\\ 900\\ 936\end{array}$$\begin{array}{@{}c@{}}\phantom{0}3.5\\ {<}1\end{array}$$\begin{array}{@{}c@{}}\phantom{0}9.5\\ \phantom{0}6.6\end{array}$$\begin{array}{@{}c@{}}986\\ 1048\\ 1119\end{array}$$\begin{array}{@{}c@{}}{<}1\\ 3.5\\ 9.5\end{array}$$\begin{array}{@{}c@{}}\phantom{0}6.6\\ \phantom{0}7.3\\ \phantom{0}0.1\end{array}$1140300[53]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:S-FAP}\\ E\Vert a~({\it\sigma})\end{array}$U$\begin{array}{@{}c@{}}898{-}987\\ 900\\ 952\\ 986\end{array}$$\begin{array}{@{}c@{}}\phantom{0}4.0\\ \phantom{0}3.0\\ {<}1\end{array}$$\begin{array}{@{}c@{}}\phantom{0}3.9\\ \phantom{0}1.1\\ 10.8\end{array}$$\begin{array}{@{}c@{}}986\\ 1048\\ 1119\end{array}$$\begin{array}{@{}c@{}}{<}1\\ 4.0\\ \text{—}\end{array}$$\begin{array}{@{}c@{}}10.8\\ \phantom{0}1.4\\ \text{—}\end{array}$1140300[53]
    $\text{Yb}^{3+}\text{:SSO}$B$\begin{array}{@{}c@{}}905{-}988\\ 914\\ 956\\ 976\end{array}$$\begin{array}{@{}c@{}}18.0\\ 19.0\\ 24.0\end{array}$$\begin{array}{@{}c@{}}\phantom{00}0.68\\ \phantom{00}0.50\\ \phantom{00}0.90\end{array}$$\begin{array}{@{}c@{}}1006\\ 1036\\ 1062\\ 1087\end{array}$57$\begin{array}{@{}c@{}}\phantom{00}0.26\\ \phantom{00}0.44\\ \phantom{00}0.38\\ \phantom{00}0.10\end{array}$1640300[46]*
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:SYS}\\ E\Vert c~({\rm\pi})\end{array}$U$\begin{array}{@{}c@{}}896{-}982\\ 918\\ 979\end{array}$$\begin{array}{@{}c@{}}43.0\\ \phantom{0}5.4\end{array}$$\begin{array}{@{}c@{}}\phantom{00}0.87\\ \phantom{00}0.40\end{array}$1040730.44800300[41, 54]*
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:SYS}\\ E\Vert a~({\it\sigma})\end{array}$U$\begin{array}{@{}c@{}}897{-}981\\ 918\\ 979\end{array}$$\begin{array}{@{}c@{}}43.0\\ \phantom{0}4.3\end{array}$$\begin{array}{@{}c@{}}\phantom{00}1.22\\ \phantom{00}0.34\end{array}$1040800300[41, 54]*
    $\text{Yb}^{3+}\text{:Y}_{2}\text{O}_{3}$A$\begin{array}{@{}c@{}}901{-}978\\ 904\\ 950\\ 976\end{array}$$\begin{array}{@{}c@{}}\phantom{0}6.1\\ 10.7\\ \phantom{0}3.8\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.7\\ \phantom{0}0.9\\ \phantom{0}2.4\end{array}$$\begin{array}{@{}c@{}}1031\\ 1076\end{array}$$\begin{array}{@{}c@{}}14.3\\ 15.6\end{array}$$\begin{array}{@{}c@{}}\phantom{00}1.06\\ \phantom{00}0.42\end{array}$850300[51]
    $\text{Yb}^{3+}$:YAGA$\begin{array}{@{}c@{}}911{-}970\\ 915\\ 941\\ 969\end{array}$$\begin{array}{@{}c@{}}\phantom{0}8.1\\ 18.9\\ \phantom{0}2.5\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.5\\ \phantom{0}0.9\\ \phantom{0}0.9\end{array}$10298.52.3951300[2, 17]
    $\text{Yb}^{3+}$:YAGA$\begin{array}{@{}c@{}}914{-}968\\ 916\\ 941\\ 968\end{array}$$\begin{array}{@{}c@{}}\phantom{0}3.9\\ \phantom{0}6.9\\ \phantom{0}0.1\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.8\\ \phantom{0}1.8\\ 37.0\end{array}$10291.511.095175–80[2, 17]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YCOB}\\ E\Vert X\end{array}$B$\begin{array}{@{}c@{}}893{-}978\\ 900\\ 950\\ 977\end{array}$$\begin{array}{@{}c@{}}14.7\\ 14.7\\ \phantom{0}2.3\end{array}$$\begin{array}{@{}c@{}}0.3\\ 0.2\\ 0.9\end{array}$$\begin{array}{@{}c@{}}977\\ 1033\\ 1084\end{array}$$\begin{array}{@{}c@{}}2.2\\ 48.2\\ 16.5\end{array}$$\begin{array}{@{}c@{}}\phantom{0}1.1\\ \phantom{0}0.3\\ \phantom{0}0.1\end{array}$2200300[52]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YCOB}\\ E\Vert Y\end{array}$B$\begin{array}{@{}c@{}}894{-}978\\ 900\\ 950\\ 977\end{array}$$\begin{array}{@{}c@{}}12.0\\ 20.0\\ \phantom{0}2.0\end{array}$$\begin{array}{@{}c@{}}0.2\\ 0.1\\ 1.5\end{array}$$\begin{array}{@{}c@{}}977\\ 1033\\ 1084\end{array}$$\begin{array}{@{}c@{}}1.3\\ 20.0\\ \text{—}\end{array}$$\begin{array}{@{}c@{}}\phantom{0}1.7\\ \phantom{0}0.3\\ \text{—}\end{array}$2200300[52]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YCOB}\\ E\Vert Z\end{array}$B$\begin{array}{@{}c@{}}894{-}978\\ 900\\ 950\\ 977\end{array}$$\begin{array}{@{}c@{}}12.7\\ 14.7\\ \phantom{0}2.2\end{array}$$\begin{array}{@{}c@{}}0.5\\ 0.1\\ 0.8\end{array}$$\begin{array}{@{}c@{}}977\\ 1033\\ 1084\end{array}$$\begin{array}{@{}c@{}}2.6\\ 28.9\\ \text{—}\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.9\\ \phantom{0}0.5\\ \text{—}\end{array}$2200300[52]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YLF}\\ E\Vert c~({\it\pi})\end{array}$U$\begin{array}{@{}c@{}}954{-}974\\ 959\\ 971\end{array}$$\begin{array}{@{}c@{}}\phantom{0}9.5\\ {\approx}5.1\phantom{0}\end{array}$$\begin{array}{@{}c@{}}1.0\\ 0.4\end{array}$102036.00.82080300[2, 55, 56]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YLF}\\ E\Vert a~({\it\sigma})\end{array}$U$\begin{array}{@{}c@{}}927{-}981\\ 931\\ 946\\ 959\\ 972\end{array}$$\begin{array}{@{}c@{}}\phantom{0}8.3\\ \phantom{0}5.2\\ 15.5\\ 16.5\end{array}$$\begin{array}{@{}c@{}}0.6\\ 0.6\\ 0.4\\ 0.3\end{array}$102027.00.72080300[2, 55, 56]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YLF}\\ E\Vert c~({\it\pi})\end{array}$U$\begin{array}{@{}c@{}}958{-}971\\ 959\\ 971\end{array}$$\begin{array}{@{}c@{}}\phantom{0}2.1\\ \text{—}\end{array}$$\begin{array}{@{}c@{}}6.8\\ 1.3\end{array}$10208.01.8199079[2, 55, 56]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YLF}\\ E\Vert a~({\it\sigma})\end{array}$U$\begin{array}{@{}c@{}}930{-}971\\ 934\\ 946\\ 960\\ 971\end{array}$$\begin{array}{@{}c@{}}\phantom{0}8.2\\ \phantom{0}3.1\\ \phantom{0}1.5\\ \text{—}\end{array}$$\begin{array}{@{}c@{}}0.8\\ 1.0\\ 2.4\\ 2.8\end{array}$102028.01.0199079[2, 55, 56]
    $\text{Yb}^{3+}\text{:YSO}$B$\begin{array}{@{}c@{}}892{-}984\\ 899\\ 917\\ 950\\ 977\end{array}$$\begin{array}{@{}c@{}}15.0\\ 24.0\\ 31.0\\ 13.0\end{array}$$\begin{array}{@{}c@{}}\phantom{0}0.31\\ \phantom{0}0.32\\ \phantom{0}0.28\\ \phantom{0}0.64\end{array}$$\begin{array}{@{}c@{}}980\\ 1003\\ 1040\\ 1056\\ 1081\end{array}$48$\begin{array}{@{}c@{}}\phantom{00}0.24\\ \phantom{00}0.39\\ \phantom{00}0.23\\ \phantom{00}0.17\\ \phantom{00}0.12\end{array}$1740300[46]*
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YVO}_{4}\\ E\Vert c~({\it\pi})\end{array}$U$\begin{array}{@{}c@{}}383{-}991\\ 987\end{array}$7.67.29877.69.6310300[57]
    $\begin{array}{@{}l@{}}\text{Yb}^{3+}\text{:YVO}_{4}\\ E\Vert a({\it\sigma})\end{array}$U$\begin{array}{@{}c@{}}952{-}992\\ 970\\ 987\end{array}$$\begin{array}{@{}c@{}}35.6\\ \phantom{0}9.9\end{array}$$\begin{array}{@{}c@{}}1.9\\ 1.7\end{array}$$\begin{array}{@{}c@{}}975\\ 987\\ 1009\end{array}$$\begin{array}{@{}c@{}}26.5\\ 13.6\\ 17.4\end{array}$$\begin{array}{@{}c@{}}\phantom{0}1.4\\ \phantom{0}2.3\\ \phantom{0}1.1\end{array}$310300[57]
    Table 3. Spectral properties of legacy and Yb-based ultrafast laser materials at room and cryogenic temperatures. Part of Table 3 is reproduced from Ref. [3].
    Crystal type Crystal$E$ field orientationWavelength (nm)$n_{0}$$n_{2}$ (esu) $10^{-13}$${\it\gamma}_{N}$ ($\text{cm}^{2}/\text{W}$) $10^{-16}$Reference
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$10641.761.303.09[61]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$5321.781.403.30[61]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$3551.801.603.72[61]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$2661.822.605.98[61]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$6501.771.363.21[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$7001.771.333.17[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$7501.761.323.14[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$8001.761.313.11[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$8501.761.303.09[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$9001.761.293.06[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$9501.761.283.04[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$10001.761.263.01[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$10501.761.262.99[62]
    SC$\text{Al}_{2}\text{O}_{3}$$E\Vert C$11001.751.242.97[62]
    SC LiSAF Unspecified850 1.39 1.10 3.30 [63]
    SC LiCAF Unspecified850 1.38 1.22 3.70 [63]
    SCLiSGAF Unspecified850 1.39 1.10 3.30 [63]
    SC$\text{Mg}_{2}\text{SiO}_{4}$Unspecified12401.640.782.00[63]
    GM$\text{SiO}_{2}$I10641.450.952.74[64]
    GM$\text{SiO}_{2}$I5271.461.053.00[64]
    GM$\text{SiO}_{2}$I3511.481.273.60[64]
    GM BK-7 I 1064 1.52 1.46 4.00 [61]
    SC YAG I 1064 1.82 2.51 5.78 [65]
    SC YAG I 1064 1.82 2.70 6.21 [66]
    CER YAG I 1064 1.82 2.49 5.73 [65]
    SC YALO$E\Vert C$10641.913.337.30[26]
    SC YLFUnoriented measurement 1064 1.46 (o) 1.48 (e) 0.60 1.72 [67]
    SC LuAG I 1064 2.14 5.50 10.77 [66]
    SC$\text{Y}_{2}\text{O}_{3}$I10641.785.3312.54[66]
    CER$\text{Y}_{2}\text{O}_{3}$I10641.785.7913.63[65]
    CER$\text{Sc}_{2}\text{O}_{3}$I10641.855.3212.05[65]
    CER$\text{Lu}_{2}\text{O}_{3}$I10641.833.969.06[65]
    SC MgO I 1064 1.74 1.61 3.88 [66]
    SC$\text{MgAl}_{2}\text{O}_{4}$I10641.721.503.65[66]
    SC$\text{CaF}_{2}$I10641.430.431.26[66]
    SC$\text{YVO}_{4}$$E\Vert C$10802.258.0615.00[68]
    SC$\text{YVO}_{4}$$E\Vert A$10801.968.8919.00[68]
    SC$\text{YVO}_{4}$Unoriented measurement10642.06*10.6221.60[69]
    SC$\text{GdVO}_{4}$Unoriented measurement10642.08*8.3416.80[69]
    SC KGW$E\Vert \text{Nm}$800–16001.999.5020.00[70]
    SC KGW$E\Vert \text{Np}$800–16002.037.2715.00[70]
    SC KYW$E\Vert \text{Nm}$10802.014.8010.00[68]
    Gas Air I400 10.001280.00536 [71]
    Gas Air I800 10.000720.00301 [71]
    Table 4. Reported room-temperature values of the linear index, nonlinear index and nonlinear coefficient for a number of important laser crystals and optical materials. Also shown are the crystal type (SC – single crystal, GM – glassy material, or CER – ceramic), the $E$-field orientation (parallel to specified crystal axis, unspecified, and I – isotropic), and the measurement wavelength. Table reproduced from Ref. [3].
    CrystalWavelength (nm)$n_{0}$${\it\beta}_{1}$ ($\text{fs}/\text{mm}$)${\it\beta}_{2}$ ($\text{fs}^{2}/\text{mm}$)${\it\beta}_{3}$ ($\text{fs}^{3}/\text{mm}$)${\it\beta}_{4}$ ($\text{fs}^{4}/\text{mm}$)Reference
    $\text{Al}_{2}\text{O}_{3}$-(e) (HEM)8001.75405928.149.948.3$-30.0$[85]
    $\text{Al}_{2}\text{O}_{3}$-(o) (HEM)8001.76205960.642.248.7$-36.7$[85]
    $\text{Al}_{2}\text{O}_{3}$-(e) (HEM)10301.74775912.411.981.3$-127.6$[85]
    $\text{Al}_{2}\text{O}_{3}$-(o) (HEM)10301.75525946.77.087.9$-146.4$[85]
    LiSAF-(e)8501.4054 4709.27.915.7$-15.0$[86]
    LiSAF-(o)8501.4074 4720.09.528.4$-1.2$[86]
    LiCAF-(e)7601.3890 4654.623.613.6$-3.3$[87]
    LiCAF-(o)7601.3899 4659.523.113.7$-3.9$[87]
    YAG 10601.8243 6148.660.968.3$-46.9$[88]
    YAG 10301.8153 6121.766.666.7$-41.6$[88]
    LuAG 10601.8279 6136.574.645.77.3 [89]
    LuAG 10301.8249 6151.864.466.1$-39.3$[89]
    YALO-(a) 10401.9341 6502.893.455.57.6 [90]
    YALO-(b) 10401.9258 6473.290.353.57.2 [90]
    YALO-(c) 10401.9140 6430.184.249.76.3 [90]
    YLF-(e) 10201.4705 4927.621.724.2$-18.7$[91]
    YLF-(o) 10201.4483 4851.818.923.3$-21.3$[91]
    YVO4-(e) 10602.1661 5947.6 341.1 305.069.1 [92]
    YVO4-(o) 10601.9579 6662.4 191.7 168.518.2 [92]
    KGW-(Np) 10321.9829 6726.0 165.8 129.69.1 [93]
    KGW-(Nm) 10272.0113 6828.7 178.7 139.512.6 [93]
    KGW-(Ng) 10242.0625 7005.8 216.0 141.53.5 [93]
    KYW-(Np) 10281.9690 6673.0 184.4 429.521.3 [93]
    KYW-(Nm) 10282.0073 6814.0 207.2 495.126.0 [93]
    KYW-(Ng) 10282.0514 6972.1 223.8 543.228.9 [93]
    KYbW-(Np) 10401.9932 6772.2 130.5 106.2$-29.9$[93]
    KYbW-(Nm) 10262.0365 6897.3 173.2 421.556.3 [93]
    KYbW-(Ng) 10242.0789 7074.3 179.6 307.720.9 [93]
    $\text{Y}_{2}\text{O}_{3}$10301.88896386.6113.993.2$-14.0$[94]
    $\text{Sc}_{2}\text{O}_{3}$10301.96546659.2124.8108.6$-30.4$[94]
    $\text{Lu}_{2}\text{O}_{3}$10301.91025691.4126.1100.6$-15.8$[94]
    $\text{CaF}_{2}$10301.42874784.118.420.2$-14.7$[26]
    BK-7, N-BK-78001.5108 5088.844.632.0$-10.0$[26]
    BK-7, N-BK-7 10301.5071 5070.225.144.7$-49.8$[26]
    SF108001.7112 5836.7 159.2 102.933.4 [47]
    SF10 10301.7030 5766.4 108.197.3$-15.7$[47]
    SF118001.7648 6036.4 189.4 124.148.3 [26]
    SF11 10301.7553 5952.9 128.9 113.0$-7.3$[26]
    N-SF148001.7429 5957.1 176.4 117.641.6 [26]
    N-SF14 10301.7337 5879.7 118.3 110.2$-17.7$[26]
    Crystal $\text{SiO}_{2}$ (e)10301.52825189.30.498.8$-193.5$[95]
    Crystal $\text{SiO}_{2}$ (o)10301.53425162.825.846.2$-53.6$[95]
    Crystal $\text{SiO}_{2}$ (e)8001.53485200.638.150.4$-43.9$[95]
    Crystal $\text{SiO}_{2}$ (o)8001.53815181.945.832.1$-12.0$[95]
    Fused silica $(\text{SiO}_{2})$8001.45334890.536.127.3$-11.0$[96]
    Fused silica $(\text{SiO}_{2})$10301.45004875.719.040.4$-49.8$[96]
    Table 5. Calculated room-temperature values of the linear index and the first-, second-, third- and fourth-order dispersion parameters for legacy and newer laser crystals of length 1 mm. Also shown are the operating laser wavelengths, as well as references to allow readers to know what Sellmeier or alternative index equation was used in the calculations. Table reproduced from Ref. [3].
    David C. Brown, Sten Torneg?rd, Joseph Kolis. Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications[J]. High Power Laser Science and Engineering, 2016, 4(2): 02000e15
    Download Citation