• Photonics Research
  • Vol. 6, Issue 10, 943 (2018)
Ya-Pei Peng1, Wei Lu2, Pengpeng Ren1, Yiqun Ni1, Yunfeng Wang3, Long Zhang4, Yu-Jia Zeng1, Wenfei Zhang1、5、*, and Shuangchen Ruan1、6、*
Author Affiliations
  • 1Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2University Research Facility in Materials Characterization and Device Fabrication, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • 3Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • 4Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 5e-mail: zhangwf@szu.edu.cn
  • 6e-mail: scruan@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000943 Cite this Article Set citation alerts
    Ya-Pei Peng, Wei Lu, Pengpeng Ren, Yiqun Ni, Yunfeng Wang, Long Zhang, Yu-Jia Zeng, Wenfei Zhang, Shuangchen Ruan. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals[J]. Photonics Research, 2018, 6(10): 943 Copy Citation Text show less
    References

    [1] C. Yan, H. Zhao, D. F. Perepichka, F. Rosei. Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties. Small, 12, 3888-3907(2016).

    [2] L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, P. A. Millner. The theoretical molecular weight of NaYF4: RE upconversion nanoparticles. Sci. Rep., 8, 1106(2018).

    [3] Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, H. M. Kim. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors. Phys. Chem. Chem. Phys., 19, 7326-7332(2017).

    [4] M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, Z. Ji. A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing. J. Mater. Chem. C, 4, 6516-6524(2016).

    [5] G. Chen, H. Qiu, P. N. Prasad, X. Chen. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev., 114, 5161-5214(2014).

    [6] B. Yan, J.-C. Boyer, N. R. Branda, Y. Zhao. Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc., 133, 19714-19717(2011).

    [7] B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, Y. Zhao. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc., 134, 16558-16561(2012).

    [8] F. Shi, Y. Zhao. Sub-10  nm and monodisperse b-NaYF4:Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence. J. Mater. Chem. C, 2, 2198-2203(2014).

    [9] L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, A. V. Zvyagin. Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy. ACS Appl. Mater. Interfaces, 8, 11945-11953(2016).

    [10] B. Redding, M. A. Choma, H. Cao. Speckle-free laser imaging using random laser illumination. Nat. Photonics, 6, 355-359(2012).

    [11] L. Florescu, S. John. Photon statistics and coherence in light emission from a random laser. Phys. Rev. Lett., 93, 013602(2004).

    [12] A. L. Burin, H. Cao, M. A. Ratner. Understanding and control of random lasing. Phys. B Condens. Matter, 338, 212-214(2003).

    [13] A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, L. Chi. Tunable random lasing behavior in plasmonic nanostructures. Nano Converg., 4, 1(2017).

    [14] D. S. Wiersma, S. Cavalieri. Light emission: a temperature-tunable random laser. Nature, 414, 708-709(2001).

    [15] R. C. Polson, Z. V. Varden. Random lasing in human tissues. Appl. Phys. Lett., 85, 1289-1291(2004).

    [16] D. S. Wiersma. The physics and applications of random lasers. Nat. Phys., 4, 359-367(2008).

    [17] Q. Song, S. Xiao, Z. Xu, V. M. Shalaev, Y. L. Kim. Random laser spectroscopy for nanoscale perturbation sensing. Opt. Lett., 35, 2624-2626(2010).

    [18] Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, Y. L. Kim. Detection of nanoscale structural changes in bone using random lasers. Biomed. Opt. Express, 1, 1401-1407(2010).

    [19] S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, Z. V. Vardeny. Cooperative emission in conjugated polymer thin films. Phys. Rev. Lett., 78, 729-732(1997).

    [20] R. C. Polson, Z. V. Vardeny. Organic random lasers in the weak-scattering regime. Phys. Rev. B, 71, 045205(2005).

    [21] G. D. Dice, S. Mujumdar, A. Y. Elezzabi. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl. Phys. Lett., 86, 131105(2005).

    [22] S. F. Yu, E. S. Leong. High-power single-mode ZnO thin-film random lasers. IEEE J. Quantum Electron., 40, 1186-1194(2004).

    [23] Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Nanolasers enabled by metallic nanoparticles: from spasers to random lasers. Laser Photon. Rev., 11, 1700212(2017).

    [24] H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, C.-H. Yan. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc., 128, 6426-6436(2006).

    [25] Z. Li, Y. Zhang. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology, 19, 345606(2008).

    [26] Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, L. Xu. Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser. Phys. Rev. Lett., 96, 033902(2006).

    [27] L. M. Jin, X. Chen, C. K. Siu, F. Wang, S. F. Yu. Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity. ACS Nano, 11, 834-849(2017).

    [28] H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, Y.-F. Chen. Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action. ACS Photon., 5, 718-727(2018).

    [29] X. Xu, W. Zhang, L. Jin, J. Qiu, S. F. Yu. Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation. Nanoscale, 7, 16246-16250(2015).

    CLP Journals

    [1] Wangqi Mao, Mingming Jiang, Jiaolong Ji, Peng Wan, Xiangbo Zhou, Caixia Kan. Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO:Ga microwire[J]. Photonics Research, 2020, 8(2): 175

    [2] Guoen Weng, Jiyu Yan, Shengjie Chen, Chunhu Zhao, Hanbing Zhang, Jiao Tian, Yuejun Liu, Xiaobo Hu, Jiahua Tao, Shaoqiang Chen, Ziqiang Zhu, Hidefumi Akiyama, Junhao Chu. Superior single-mode lasing in a self-assembly CsPbX3 microcavity over an ultrawide pumping wavelength range[J]. Photonics Research, 2021, 9(1): 54

    Ya-Pei Peng, Wei Lu, Pengpeng Ren, Yiqun Ni, Yunfeng Wang, Long Zhang, Yu-Jia Zeng, Wenfei Zhang, Shuangchen Ruan. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals[J]. Photonics Research, 2018, 6(10): 943
    Download Citation