[1] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, San Diego, USA, CVPR, 2005: 886-893.
[3] WANG X, HAN T X, YAN S. An HOG-LBP human detector with partial occlusion handling[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, San Francisco, USA, CVPR, 2010: 32-39.
[4] FELZENSZWALB P F, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, USA, CVPR, 2008: 1-8.
[5] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al.. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(9): 1627.
[6] PEDERSOLI M, VEDALDI A, GONZALEZ J, et al.. A coarse-to-fine approach for fast deformable object detection[J]. Pattern Recognition, 2015, 48(5): 1844-1853.
[7] OUYANG W, ZHOU H, LI H, et al. Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, PP(99): 1-1.
[8] OUYANG W, ZENG X, WANG X, et al.. DeepID-Net: object detection with deformable part based convolutional neural networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(7): 1320-1334.
[9] YANG Y, RAMANAN D. Articulated human detection with flexible mixtures of parts[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(12): 2878.
[10] PAN N, SUN Y J, LIU Y. Efficient matching technique for laser detection features of cable cutting traces[J]. Opt. Precision Eng., 2017, 25(10s): 183-190. (in Chinese)
[11] WU J, LIU H, XIONG H, et al.. K-Means based consensus clustering: a unified view[J]. IEEE Transactions on Knowledge & Data Engineering, 2015, 27(1): 155-169.
[12] CELEBI M E, KINGRAVI H A. A comparative study of efficient initialization methods for the k-means clustering algorithm[J]. Expert Systems with Applications, 2012, 40(1): 200-210.
[15] ESS A, LEIBE B, SCHINDLER K, et al.. A mobile vision system for robust multi-person tracking[C]. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, USA, CVPR, 2008: 1-8.
[16] NIE B X, XIONG C, ZHU S C. Joint action recognition and pose estimation from video[C]. 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Boston, USA, CVPR, 2015: 1293-1301.
[17] RAMANAN D. Learning to Parse Images of Articulated Bodies[C]. Proc. Advances in Neural Information Processing System, Vancouver, Canada, NIPS, 2007: 1-8.
[18] PIVIDORI M, STEGMAYER G, MILONE D H. Diversity control for improving the analysis of consensus clustering[J]. Information Sciences, 2016, s361-362(C): 120-134.
[19] FONG S, WONG R, VASILAKOS A V. Accelerated PSO swarm search feature selection for data stream mining big data[J]. IEEE Transactions on Services Computing, 2016, 9(1): 33-45.
[20] DUAN H B, ZHANG X Y, XU CH F. Bio-inspired Computing[M]. Beijing: Science Press, 2011. (in Chinese)
[21] WANG X, HAN T X, YAN S. An HOG-LBP human detector with partial occlusion handling[C]. 2009 IEEE International Conference on Computer Vision, Kyoto, Japan, ICCV, 2009: 32-39.
[22] LIU Y, ZENG L, HUANG Y. An efficient HOG-ALBP feature for pedestrian detection[J]. Signal Image & Video Processing, 2014, 8(1): 125-134.
[23] LIU Y, ZOU L, LI J, et al.. Segmentation by weighted aggregation and perceptual hash for pedestrian detection[J]. Journal of Visual Communication & Image Representation, 2016, 36(C): 80-89.
[24] ANGELOVA A, KRIZHEVSKY A, VANHOUCKE V. Pedestrian detection with a Large-Field-Of-View deep network[C]. 2015 IEEE International Conference on Robotics and Automation, Washington, USA, ICRA, 2015: 704-711.