• Acta Physica Sinica
  • Vol. 69, Issue 9, 098301-1 (2020)
Dan Zhao*, Shuai-Hu Wang, Shao-Gang Liu, Jin Cui, and Li-Qiang Dong
Author Affiliations
  • College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
  • show less
    DOI: 10.7498/aps.69.20200326 Cite this Article
    Dan Zhao, Shuai-Hu Wang, Shao-Gang Liu, Jin Cui, Li-Qiang Dong. Vibration transfer characteristic of gradient-like structure based on magnetorheological fluid[J]. Acta Physica Sinica, 2020, 69(9): 098301-1 Copy Citation Text show less
    Impedance distribution diagram.
    Fig. 1. Impedance distribution diagram.
    Schematic diagram of the experimental device for constructing gradient-like structure.
    Fig. 2. Schematic diagram of the experimental device for constructing gradient-like structure.
    Vibration transfer characteristic of the homogeneous quasi-solid magnetorheological fluid.
    Fig. 3. Vibration transfer characteristic of the homogeneous quasi-solid magnetorheological fluid.
    Structure diagram of the experimental set-up.
    Fig. 4. Structure diagram of the experimental set-up.
    Comparison of vibration transfer characteristic of quasi-solid magnetorheological fluid under different magnetic field: (a) 30 mT; (b) 50 mT; (c) 70 mT; (d) 100 mT.
    Fig. 5. Comparison of vibration transfer characteristic of quasi-solid magnetorheological fluid under different magnetic field: (a) 30 mT; (b) 50 mT; (c) 70 mT; (d) 100 mT.
    Error between theoretical results and experimental results.
    Fig. 6. Error between theoretical results and experimental results.
    Vibration characteristic of gradient-like structure.
    Fig. 7. Vibration characteristic of gradient-like structure.
    Vibration characteristic of the gradient-like structure under different magnetic field intensity.
    Fig. 8. Vibration characteristic of the gradient-like structure under different magnetic field intensity.
    Comparison between gradient-like structure and homogeneous magnetorheological fluid: (a) 50 mT; (b) 70 mT; (c) 100 mT
    Fig. 9. Comparison between gradient-like structure and homogeneous magnetorheological fluid: (a) 50 mT; (b) 70 mT; (c) 100 mT
    Comparison between experimental and numerical results of vibration transfer characteristic of gradient like structure: (a) 50 mT; (b) 70 mT; (c) 100 mT
    Fig. 10. Comparison between experimental and numerical results of vibration transfer characteristic of gradient like structure: (a) 50 mT; (b) 70 mT; (c) 100 mT
    性能名称平均粒径颗粒密度载液密度零场黏度颗粒体积分数
    d/μm ${\rho _{\rm{f}}}$/kg·m–3${\rho _{\rm{r}}}$/kg·m–3$\eta $/Ns·m–2$\theta $
    参数值5.566989980.242527%
    Table 1.

    Characteristic parameters of the magnetorheological fluid.

    磁流变液性能参数

    修正倍数振级落差
    理论值/dB实验值/dB误差
    2倍9.687615.441937.31%
    5倍14.47396.27%
    10倍18.299518.51%
    15倍19.827528.40%
    20倍20.779534.57%
    Table 2.

    Comparison of numerical results and experimental results.

    修正后的理论模型和实验结果对比

    修正倍数振级落差
    理论值/dB实验值/dB误差
    5倍14.473915.44196.27%
    6倍15.53120.58%
    7倍16.41326.29%
    8倍17.152411.08%
    9倍17.774315.10%
    Table 3.

    Comparison of numerical results and experimental results (5–10 times).

    修正后的理论模型和实验结果对比(5—10倍)

    输入弹性波频率振级落差
    理论值/dB实验值/dB误差
    30 Hz5.14575.60428.18%
    40 Hz6.86106.79790.93%
    50 Hz8.57628.51990.66%
    60 Hz10.291510.28580.06%
    70 Hz12.006711.56794.3%
    80 Hz13.721912.87656.51%
    90 Hz14.437213.80864.55%
    100 Hz15.531215.44190.58%
    Table 4.

    Comparison of numerical results and experimental results (30–100 Hz).

    修正后的理论模型和实验结果对比(30—100 Hz)

    编号实验参数/mT误差
    实验1502.856%
    实验2702.233%
    实验31003.585%
    Table 5.

    Error between experimental and theoretical results.

    实验与理论结果误差

    Dan Zhao, Shuai-Hu Wang, Shao-Gang Liu, Jin Cui, Li-Qiang Dong. Vibration transfer characteristic of gradient-like structure based on magnetorheological fluid[J]. Acta Physica Sinica, 2020, 69(9): 098301-1
    Download Citation