• Optics and Precision Engineering
  • Vol. 31, Issue 18, 2700 (2023)
Liming LIANG, Anjun HE, Renjie LI, and Jian WU*
Author Affiliations
  • School of Electrical Engineering and Automation,Jiangxi University of Science and Technology, Ganzhou341000,China
  • show less
    DOI: 10.37188/OPE.20233118.2700 Cite this Article
    Liming LIANG, Anjun HE, Renjie LI, Jian WU. Cross-scale and cross-dimensional adaptive transformer network for colorectal polyp segmentation[J]. Optics and Precision Engineering, 2023, 31(18): 2700 Copy Citation Text show less
    References

    [1] W LI, Y ZHAO, F LI et al. MIA-Net: multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation. Knowledge-Based Systems, 247, 108824(2022).

    [2] 徐昌佳, 易见兵, 曹锋, 等. 采用DoubleUNet网络的结直肠息肉分割算法[J]. 光学 精密工程, 2022, 30(8): 970-983. doi: 10.37188/ope.20223008.0970XUC J, YIJ B, CAOF, et al. Colorectal polyp segmentation algorithm using DoubleUNet network[J]. Opt. Precision Eng., 2022, 30(8): 970-983. (in Chinese). doi: 10.37188/ope.20223008.0970

    [3] 梁礼明, 周珑颂, 冯骏, 等. 基于高分辨率复合网络的皮肤病变分割[J]. 光学 精密工程, 2022, 30(16)2021-2038. doi: 10.37188/OPE.20223016.2021LIANGL M, ZHOUL S, FENGJ, et al. Skin lesion segmentation based on high-resolution composite network[J]. Opt. Precision Eng., 2022, 30(16)2021-2038(in Chinese). doi: 10.37188/OPE.20223016.2021

    [4] H LIANG, Z CHENG, H ZHONG et al. A region-based convolutional network for nuclei detection and segmentation in microscopy images. Biomedical Signal Processing and Control, 71, 103276(2022).

    [5] D G SHAO, C R XU, Y XIANG et al. Ultrasound image segmentation with multilevel threshold based on differential search algorithm. IET Image Processing, 13, 998-1005(2019).

    [6] 周明全, 杨稳, 林芃樾, 等. 基于最小二乘正则相关性分析的颅骨身份识别[J]. 光学 精密工程, 2021, 29(01):201-210. doi: 10.37188/OPE.20212901.0201ZHOUM Q, YANGW, LINP Y, et al. Skull identification based on least square canonical correlation analysis[J]. Opt. Precision Eng., 2021, 29(1): 201-210. (in Chinese). doi: 10.37188/OPE.20212901.0201

    [7] 梁礼明, 刘博文, 杨海龙, 等. 基于多特征融合的有监督视网膜血管提取[J]. 计算机学报, 2018, 41(11):2566-2580. doi: 10.11897/SP.J.1016.2018.02566LIANGL M, LIUB W, YANGH L, et al. Supervised blood vessel extraction in retinal images based on multiple feature fusion[J]. Chinese Journal of Computers, 2018, 41(11): 2566-2580.(in Chinese). doi: 10.11897/SP.J.1016.2018.02566

    [8] O RONNEBERGER, P FISCHER, T BROX. U-Net Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, 234-241(2015).

    [9] P H SMEDSRUD, M A RIEGLER et al. ResUNet: an advanced architecture for medical image segmentation, 225-2255(9).

    [10] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 7132-7141(18).

    [11] D FAN, G JI, T ZHOU et al. PraNet: Parallel Reverse Attention Network for Polyp Segmentation. arXiv, 2006-11392(2020). https://arxiv.org/abs/2006.11392.pdf

    [12] A G LOU, S Y GUAN et al. CaraNet: context axial reverse attention network for segmentation of small medical objects, 12032, 81-92(2022).

    [13] A VASWANI, N SHAZEER, N PARMAR et al. Attention is All You Need. arXiv, 1706-03762(2017). https://arxiv.org/abs/1706.03762.pdf

    [14] Y DAI, Y F GAO, F Y LIU. TransMed: transformers advance multi-modal medical image classification. Diagnostics (Basel, Switzerland), 11, 1384(2021).

    [15] J CHEN, Y LU, Q YU et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv, 2102-04306(2021). https://arxiv.org/abs/2102.04306.pdf

    [16] J F WANG, Q M HUANG, F L TANG et al. Stepwise Feature Fusion Local Guides Global. Lecture Notes in Computer Science, 110-120(2022).

    [17] C WU, C LONG, S LI et al. MSRAformer: Multiscale spatial reverse attention network for polyp segmentation. Computers in Biology and Medicine, 151, 106274(2022).

    [18] W H WANG, E Z XIE, X LI et al. PVT v2: improved baselines with pyramid vision transformer. Computational Visual Media, 8, 415-424(2022).

    [19] M A ISLAM, S JIA, N D B BRUCE. How Much Position Information Do Convolutional Neural Networks Encode?. arXiv, 2001-08248(2020). https://arxiv.org/abs/2001.08248.pdf

    [20] J C RUAN, S C XIANG, M Y XIE et al. MALUNet: a multi-attention and light-weight UNet for skin lesion segmentation, 1150-1156(6).

    [21] B DONG, W WANG, D FAN et al. Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers. arXiv, 2108-06932(2021). https://arxiv.org/abs/2108.06932

    [22] 刘媛媛, 周小康, 王跃勇, 等. 改进U-Net模型的保护性耕作田间秸秆覆盖检测[J]. 光学 精密工程, 2022, 30(9): 1101-1112. doi: 10.37188/OPE.20223009.1101LIUY Y, ZHOUX K, WANGY Y, et al. Straw coverage detection of conservation tillage farmland based on improved U-Net model[J]. Opt. Precision Eng., 2022, 30(9): 1101-1112. (in Chinese). doi: 10.37188/OPE.20223009.1101

    [23] W ZHANG, C FU, Y ZHENG et al. HSNet: a hybrid semantic network for polyp segmentation. Computers in Biology and Medicine, 150, 106173(2022).

    [24] J BERNAL, FJ SÁNCHEZ, G FERNÁNDEZ-ESPARRACH et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics, 43, 99-111(2015).

    [25] P H SMEDSRUD, M A RIEGLER et al. Kvasir-SEG a Segmented Polyp Dataset. MultiMedia Modeling, 451-462(2019).

    [26] N TAJBAKHSH, S R GURUDU, J M LIANG. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Transactions on Medical Imaging, 35, 630-644(2016).

    [27] J SILVA, A HISTACE, O ROMAIN et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. International Journal of Computer Assisted Radiology and Surgery, 9, 283-293(2014).

    [28] K PATEL, A M BUR, G H WANG. Enhanced U-Net: a feature enhancement network for polyp segmentation, 181-188(26).

    CLP Journals

    [1] Jianbing YI, Jianhui WAN, Feng CAO, Jun LI, Xin CHEN. Multi-scale polyp segmentation network employing cascaded strategy to fuse boundary features[J]. Optics and Precision Engineering, 2024, 32(18): 2846

    [2] Hanhan XU, Yinhui ZHANG, Zifen HE, Jiacen LIU, Zhenhui LI, Lin WU, Benjie SHI. Pseudo-label confidence regulates semi-supervised semantic segmentation of pathological images of colorectal cancer[J]. Optics and Precision Engineering, 2025, 33(4): 591

    [3] Hanhan XU, Yinhui ZHANG, Zifen HE, Jiacen LIU, Zhenhui LI, Lin WU, Benjie SHI. Pseudo-label confidence regulates semi-supervised semantic segmentation of pathological images of colorectal cancer[J]. Optics and Precision Engineering, 2025, 33(4): 591

    Liming LIANG, Anjun HE, Renjie LI, Jian WU. Cross-scale and cross-dimensional adaptive transformer network for colorectal polyp segmentation[J]. Optics and Precision Engineering, 2023, 31(18): 2700
    Download Citation