• Chinese Journal of Lasers
  • Vol. 48, Issue 24, 2401001 (2021)
Yantang Huang1、2、*, Sheng Lin1, Jingping Liu1, Canxua Xu1, and Tingdi Liao2、**
Author Affiliations
  • 1College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
  • 2Research Center for Photonic Technology, Quanzhou Normal University, Quanzhou, Fujian 362000, China
  • show less
    DOI: 10.3788/CJL202148.2401001 Cite this Article Set citation alerts
    Yantang Huang, Sheng Lin, Jingping Liu, Canxua Xu, Tingdi Liao. Self-Stimulated Raman Laser Enhancement of Yb 3+-Zr 4+ Co-Doped Microspheres[J]. Chinese Journal of Lasers, 2021, 48(24): 2401001 Copy Citation Text show less
    References

    [1] Chang Y T, Su K W, Chang H L et al. Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd∶YVO4 crystal as a self-Raman medium[J]. Optics Express, 17, 4330-4335(2009).

    [2] Basiev T T, Doroshenko M E, Smetanin S N et al. Multi-wave SRS oscillation in PbMoO4 and PbMo0.5W0.5O4 crystals under 18 picosecond laser pumping[J]. Laser Physics Letters, 9, 853-857(2012).

    [3] Chen H T, Lou Q H, Dong J X et al. High-efficiency 1598.5-nm third Stokes Raman laser based on Barium nitrate crystal[J]. Chinese Optics Letters, 4, 404-406(2006).

    [4] Zhang H N, Chen X H, Wang Q P et al. Dual-wavelength actively Q-switched diode-end-pumped ceramic Nd∶YAG/BaWO4 Raman laser operating at 1240 and 1376 nm[J]. Laser Physics Letters, 11, 105806(2014).

    [5] Chen Y F, Huang H Y, Lee C C et al. High-power diode-pumped Nd∶GdVO4/KGW Raman laser at 578 nm[J]. Optics Letters, 45, 5562-5565(2020).

    [6] Lan R J, Zhang F, Wang Z P et al. Efficient near-infrared, multiwavelengths PbWO4 Raman laser[J]. Optical Engineering, 56, 096112(2017).

    [7] Ren X K, Xie J, Ruan S C et al. Diode-end-pumped solid state ZnWO4 Raman laser at 2254 nm[J]. Laser Physics, 30, 015001(2020).

    [8] Xu J J, Zhang X Y, Cong Z H et al. Tunable Nd 3+∶YAG/KTiOAsO4 Raman lasers[J]. Chinese Journal of Lasers, 47, 0601002(2020).

    [9] Ren X K, Xie J, Ruan S C et al. First-Stokes Raman lasers based on ZnWO4/Nd∶YAG[J]. Chinese Journal of Lasers, 47, 0601003(2020).

    [10] Ren X K, Xie J, Ruan S C et al. ZnWO4/Nd∶YAG second-order Raman laser at 1318 nm[J]. Acta Optica Sinica, 40, 0536001(2020).

    [11] Zhao H, Wang H Y, Zhu S Q et al. 578.5 nm end-pumped passively Q-switched Raman yellow laser[J]. Laser & Optoelectronics Progress, 58, 0114004(2021).

    [12] Wei G Q, Yu Y, Zhuo M P et al. Organic single-crystalline whispering-gallery mode microlasers with efficient optical gain activated via excited state intramolecular proton transfer luminogens[J]. Journal of Materials Chemistry C, 8, 11916-11921(2020).

    [13] Li X J, Wang K Y, Chen M M et al. Stable whispering gallery mode lasing from solution-processed formamidinium lead bromide perovskite microdisks[J]. Advanced Optical Materials, 8, 2000030(2020).

    [14] Fabitha K, Wakiyama Y, Oshima H et al. Realization of sharp visible WGM lasing from Sm 3+∶ZnO micro-spheres fabricated by laser ablation technique[J]. Journal of Physics D: Applied Physics, 53, 135302(2020).

    [15] Zhang P J, Huang Y, Guo C L et al. Study of cascaded Raman scattering laser in silica microsphere pumped by 976 nm laser[J]. Acta Physica Sinica, 62, 224207(2013).

    [16] Min B, Kippenberg T J, Vahala K J. Compact, fiber-compatible, cascaded Raman laser[J]. Optics Letters, 28, 1507-1509(2003).

    [17] Min B, Kippenberg T J, Yang L et al. Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip[J]. Physical Review A, 70, 033803(2004).

    [18] Kippenberg T J, Spillane S M, Min B et al. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 1219-1228(2004).

    [19] Yang L, Carmon T, Min B et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process[J]. Applied Physics Letters, 86, 091114(2005).

    [20] Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity[J]. Nature, 415, 621-623(2002).

    [21] Huang Y T, Peng L X, Zhuang S J et al. Stimulated lasing and self-excited stimulated Raman scattering of Nd 3+ doped silica microsphere pumped by 808 nm laser[J]. Acta Physica Sinica, 66, 244208(2017).

    [22] Wu T J, Huang Y T, Ma J et al. Study on luminescent properties of Yb 3+-doped phosphosilicate microsphere[J]. Acta Physica Sinica, 63, 217805(2014).

    [23] Huang Y, Zhang P J, Guo C L et al. Up-conversion and self-stimulated Raman laser in a codoped microsphere[J]. IEEE Photonics Technology Letters, 25, 1385-1388(2013).

    [24] Deka N, Maker A J, Armani A M. Titanium-enhanced Raman microcavity laser[J]. Optics Letters, 39, 1354-1357(2014).

    [25] Choi H, Armani A M. High efficiency Raman lasers based on Zr-doped silica hybrid microcavities[J]. ACS Photonics, 3, 2383-2388(2016).

    [26] Choi H, Armani A M. Raman-Kerr frequency combs in Zr-doped silica hybrid microresonators[J]. Optics Letters, 43, 2949-2952(2018).

    [27] Farrow L A, Vogel E M. Raman spectra of phosphate and silicate glasses doped with the cations Ti, Nb and Bi[J]. Journal of Non-Crystalline Solids, 143, 59-64(1992).

    [28] Irimpan L, Nampoori V P N, Radhakrishnan P et al. Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO[J]. Journal of Applied Physics, 103, 033105(2008).

    [29] Xu W X. Polarizabilities of nanoparticles of SiO2 and ZrO2[J]. Acta Physico-Chimica Sinica, 23, 1808-1810(2007).

    [30] Colomban P, Slodczyk A. Raman intensity: an important tool in the study of nanomaterials and nanostructures[J]. Acta Physica Polonica A, 116, 7-12(2009).

    [31] Kippenberg T J, Spillane S M, Armani D K et al. Ultralow-threshold microcavity Raman laser on a microelectronic chip[J]. Optics Letters, 29, 1224-1226(2004).

    [32] Stolen R H, Ippen E P. Raman gain in glass optical waveguides[J]. Applied Physics Letters, 22, 276-278(1973).

    [33] Rivero C, Richardson K, Stegeman R et al. Quantifying Raman gain coefficients in tellurite glasses[J]. Journal of Non-Crystalline Solids, 345/346, 396-401(2004).

    [34] Coccioli R, Boroditsky M, Yablonovitch E et al. Smallest possible electromagnetic mode volume in a dielectric cavity[J]. IEE Proceedings-Optoelectronics, 145, 391-397(1998).

    [35] Ostby E P, Yang L, Vahala K J. Ultralow-threshold Yb 3+∶SiO2 glass laser fabricated by the solgel process[J]. Optics Letters, 32, 2650-2652(2007).

    [36] Liu J H, Griebner U, Petrov V et al. Efficient continuous-wave and Q-switched operation of a diode-pumped Yb∶KLu(WO4)2 laser with self-Raman conversion[J]. Optics Letters, 30, 2427-2429(2005).

    [37] Guo C L, Huang Y, Zhang P J et al. Study of laser emission from Er 3+-doped silica microsphere pumped by 976 nm light[J]. Chinese Journal of Lasers, 40, 0302004(2013).

    [38] Del’Haye P, Arcizet O, Gorodetsky M L et al. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion[J]. Nature Photonics, 3, 529-533(2009).

    [39] Spillane S M, Kippenberg T J, Painter O J et al. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics[J]. Physical Review Letters, 91, 043902(2003).

    [40] Cai M, Painter O, Vahala K J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system[J]. Physical Review Letters, 85, 74-77(2000).

    Yantang Huang, Sheng Lin, Jingping Liu, Canxua Xu, Tingdi Liao. Self-Stimulated Raman Laser Enhancement of Yb 3+-Zr 4+ Co-Doped Microspheres[J]. Chinese Journal of Lasers, 2021, 48(24): 2401001
    Download Citation