• Optoelectronics Letters
  • Vol. 18, Issue 9, 530 (2022)
Ding SUN1、*, Yuhong ZHANG1, Lingqun WANG1, and Li ZHANG2
Author Affiliations
  • 1School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
  • 2Key Laboratory of Photoelectronic Thin Film Devices and Technology, Institute of Photo Electronics Thin Film Devices and Technology, Nankai University, Tianjin 300071, China
  • show less
    DOI: 10.1007/s11801-022-2040-7 Cite this Article
    SUN Ding, ZHANG Yuhong, WANG Lingqun, ZHANG Li. Effects of Sb-doping on the grain growth of CIGS thin films fabricated by electrodeposition[J]. Optoelectronics Letters, 2022, 18(9): 530 Copy Citation Text show less
    References

    [1] MUFTI N, AMRILLAH T, TAUFIQ A, et al. Review of CIGS-based solar cells manufacturing by structural engineering[J]. Solar energy, 2020, 207:1146-1157.

    [2] KUMAR A, SINGH S, MOHAMMED M, et al. Computational modelling of two terminal CIGS/perovskite tandem solar cells with power conversion efficiency of 23.1%[J]. European journal of inorganic chemistry, 2021, 2021(47):4959-4969.

    [3] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE journal of photovoltaics, 2019, 9(6):1863-1867.

    [4] SONG Q, ZHANG L, YANG C, et al. Novel electrodeposition method for Cu-In-Cd-Ga sequential separation from waste solar cell:mechanism, application, and environmental impact assessment[J]. Environmental science and technology, 2021, 55(15):10724-10733.

    [5] REINHARD P, BUECHELER S, TIWARI A N. Technological status of Cu(In,Ga)(Se,S)2-based photovoltaics[J]. Solar energy materials and solar cells, 2013, 119:287-290.

    [6] PENG X, ZHAO M, ZHUANG D, et al. Multi-layer strategy to enhance the grain size of CIGS thin film fabricating by single quaternary CIGS target[J]. Journal of alloys and compounds, 2017, 710:72-176.

    [7] ZHAI J, CAO H, ZHAO M, et al. Smooth and highly-crystalline Ag-doped CIGS films sputtered from quaternary ceramic targets[J]. Ceramics international, 2021, 47(2):2288-2293.

    [8] ZHAO Y H, GAO Q Q, YUAN S J, et al. Defects passivation and crystal growth promotion by solution-processed K doping strategy toward 16.02% efficiency Cu(In,Ga)(S,Se)2 solar cells[J]. Chemical engineering journal, 2022, 436:135008.

    [9] YUAN M, MITZI D B, LIU W, et al. Optimization of CIGS-based PV device through antimony doping[J]. Chemistry of materials, 2009, 22:285-287.

    [10] PUYVELDE L V, LAUWAERT J, TEMPEZ A, et al. Electronic defect study on low temperature processed Cu(In,Ga)Se2 thin-film solar cells and the influence of an Sb layer[J]. Journal of physics D applied physics, 2015, 48(17):175104.

    [11] MANSFIELD L M, KUCIAUSKAS D, DIPPO P, et al. Optoelectronic investigation of Sb-doped Cu(In,Ga)Se2[J]. IEEE journal of photovoltaics, 2015, 5(6):1769-1774.

    [12] CHEN J, SHEN H, ZHAI Z, et al. Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by E-beam evaporation[J]. Applied surface science, 2018, 433:271-278.

    [13] WANG Y C, SHIEH H P D. Improvement of bandgap homogeneity in Cu(InGa)Se2 thin films using a modified two-step selenization process[J]. Applied physics letters, 2013, 103(15):894-513.

    [14] YEH M H, HO S J, WANG K C, et al. Toward low-cost large-area CIGS thin film II:out-of-plane compositional variations of sequentially electrodeposited Cu/In/Cu/Ga/Cu stacked layers selenized in rapid thermal process[J]. Solar energy, 2016, 129:116-125.

    [15] PANIGRAHI M R, PANIGRAHI S. Structural analysis of 100% relative intense peak of Ba1-xCaxTiO3 ceramics by X-ray powder diffraction method[J]. Physica B, 2010, 405(7):1787-1791.

    [16] KOO J, JEON S, OH M, et al. Optimization of Se layer thickness in Mo/CuGa/In/Se precursor for the formation of Cu(InGa)Se2 by rapid thermal annealing[J]. Thin solid films, 2013, 535:148-153.

    [17] HUANG Y, TANG Y, YUAN W, et al. Coupled effect of pre-alloying treatment and plasma-assisted Se vapor selenization process in Cu(In,Ga)Se2 thin film[J]. Solar energy, 2017, 150:375-382.

    [18] XUE H T, LU W J, TANG F L, et al. Phase diagram of the CuInSe2-CuGaSe2 pseudobinary system studied by combined ab initio density functional theory and thermodynamic calculation[J]. Journal of applied physics, 2014, 116(5):053512.

    [19] GUETAY L, BAUER G H. Spectrally resolved photoluminescence studies on Cu(In,Ga)Se2 solar cells with lateral submicron resolution[J]. Thin solid films, 2007, 515:6212-6216.

    [20] WERNER J, MATTHEIS J, RAU U. Efficiency limitations of polycrystalline thin film solar cells:case of Cu(In,Ga)Se2[J]. Thin solid films, 2005, 480(81): 399-409.

    [21] SHU Z, LU W, YUE R, et al. Effects of Sb-doping on the grain growth of Cu(In,Ga)Se2 thin films fabricated by means of single-target sputtering[J]. Thin solid films, 2013, 527:137-140.

    SUN Ding, ZHANG Yuhong, WANG Lingqun, ZHANG Li. Effects of Sb-doping on the grain growth of CIGS thin films fabricated by electrodeposition[J]. Optoelectronics Letters, 2022, 18(9): 530
    Download Citation