• Photonics Research
  • Vol. 9, Issue 4, 567 (2021)
Jie Li1、†, Chenglong Zheng1、†, Guocui Wang2、3, Jitao Li1, Hongliang Zhao1, Yue Yang1, Zhang Zhang1, Maosheng Yang4, Liang Wu1, Jining Li1, Yating Zhang1、5、*, Yan Zhang2, and Jianquan Yao1、6、*
Author Affiliations
  • 1Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
  • 3Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 4School of Mechanical Engineering, Jiangsu University, Zhenjiang 225009, China
  • 5e-mail: yating@tju.edu.cn
  • 6e-mail: jqyao@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.415547 Cite this Article Set citation alerts
    Jie Li, Chenglong Zheng, Guocui Wang, Jitao Li, Hongliang Zhao, Yue Yang, Zhang Zhang, Maosheng Yang, Liang Wu, Jining Li, Yating Zhang, Yan Zhang, Jianquan Yao. Circular dichroism-like response of terahertz wave caused by phase manipulation via all-silicon metasurface[J]. Photonics Research, 2021, 9(4): 567 Copy Citation Text show less
    References

    [1] L. D. Barron. True and false chirality and parity violation. Chem. Phys. Lett., 123, 423-427(1986).

    [2] J. Mun, M. Kim, Y. Yang, T. Badloe, J. Ni, Y. Chen, C. W. Qiu, J. Rho. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light Sci. Appl., 9, 139(2020).

    [3] Z. Cao, H. Gao, M. Qiu, W. Jin, S. Deng, K. Wong, D. Lei. Chirality transfer from sub-nanometer biochemical molecules to sub-micrometer plasmonic metastructures: physiochemical mechanisms, biosensing, and bioimaging opportunities. Adv. Mater., 32, 1907151(2020).

    [4] Y. Tang, A. E. Cohen. Optical chirality and its interaction with matter. Phys. Rev. Lett., 104, 163901(2010).

    [5] Y. Tang, A. E. Cohen. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science, 332, 333-336(2011).

    [6] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [7] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513-1515(2009).

    [8] A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. Roller, A. Hogele, F. Simmel, A. Govorov, T. Liedl. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 483, 311-314(2012).

    [9] H. Xu, G. Hu, Y. Li, L. Han, J. Zhao, Y. Sun, F. Yuan, G. Wang, Z. Jiang, X. Ling, T. Cui, C. Qiu. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light Sci. Appl., 8, 3(2019).

    [10] W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, J. Valentine. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun., 6, 8379(2015).

    [11] L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. Lee, Y. Liu, D. H. Werner, A. Urbas, W. Cai. Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror. Nano Lett., 17, 7102-7109(2017).

    [12] T. Kim, S. Oh, H. Kim, H. Park, O. Hess, B. Min, S. Zhang. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci. Adv., 3, e1701377(2017).

    [13] J. Guirado, M. Svedendahl, J. Puigdollers. Enhanced chiral sensing with dielectric nanoresonators. Nano Lett., 20, 585-591(2020).

    [14] L. D. Barron, N. Gadegaard, M. Kadodwala. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol., 5, 783-787(2010).

    [15] W. Zhang, T. Wu, R. Wang, X. Zhang. Amplification of the molecular chiroptical effect by low-loss dielectric nanoantennas. Nanoscale, 9, 5701-5707(2017).

    [16] E. Plum, V. A. Fedotov, N. I. Zheludev. Metamaterials: optical activity without chirality. Phys. Rev. Lett., 102, 113902(2009).

    [17] I. Sersic, M. A. Haar, F. B. Arango, A. F. Koenderink. Ubiquity of optical activity in planar metamaterial scatterers. Phys. Rev. Lett., 108, 223903(2012).

    [18] L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, H. Chen. Gradient chiral metamirrors for spin-selective anomalous reflection. Laser Photonics Rev., 11, 1700115(2017).

    [19] Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, Y. Liu. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics, 3, 2096-2101(2016).

    [20] F. Neubrech, M. Hentschel, N. Liu. Reconfigurable plasmonic chirality: fundamentals and applications. Adv. Mater., 32, 1905640(2020).

    [21] D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, V. K. Valev. Strong rotational anisotropies affect nonlinear chiral metamaterials. Adv. Mater., 29, 1605110(2017).

    [22] C. Niu, Z. Wang, J. Zhao, L. Du, N. Liu, Y. Liu, X. Li. Photonic heterostructures for spin-flipped beam splitting. Phys. Rev. Appl., 12, 044009(2019).

    [23] J. Fan, Y. Cheng, B. He. High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies. J. Phys. D, 54, 115101(2021).

    [24] Y. Cheng, F. Chen, H. Luo. Multi-band giant circular dichroism based on conjugated bilayer twisted-semicircle nanostructure at optical frequency. Phys. Lett. A, 384, 126398(2020).

    [25] Y. Cheng, J. Fan, H. Luo, F. Chen. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access, 8, 7615-7621(2020).

    [26] J. Fan, Y. Cheng. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J. Phys. D, 53, 025109(2020).

    [27] Y. Li, Y. Li, L. Chen, M. Hong. Reflection tuning via destructive interference in metasurface. Opto-Electron. Eng., 44, 313-318(2017).

    [28] J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [29] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [30] W. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, N. A. Kotov. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater., 18, 820-826(2019).

    [31] C. Menzel, C. Rockstuhl, F. Lederer. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A, 82, 053811(2010).

    Jie Li, Chenglong Zheng, Guocui Wang, Jitao Li, Hongliang Zhao, Yue Yang, Zhang Zhang, Maosheng Yang, Liang Wu, Jining Li, Yating Zhang, Yan Zhang, Jianquan Yao. Circular dichroism-like response of terahertz wave caused by phase manipulation via all-silicon metasurface[J]. Photonics Research, 2021, 9(4): 567
    Download Citation