• Advanced Fiber Materials
  • Vol. 6, Issue 5, 00435 (2024)
Chong Gao1, Yingcun Liu3, Zongxue Gu2, Juan Li2..., Yue Sun2, Wei Li2, Keshuai Liu2,*, Duo Xu2,**, Bin Yu1,*** and Weilin Xu2,****|Show fewer author(s)
Author Affiliations
  • 1College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
  • 2State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, People’s Republic of China
  • 3College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People’s Republic of China
  • show less
    DOI: 10.1007/s42765-024-00435-3 Cite this Article
    Chong Gao, Yingcun Liu, Zongxue Gu, Juan Li, Yue Sun, Wei Li, Keshuai Liu, Duo Xu, Bin Yu, Weilin Xu. Hierarchical Structured Fabrics with Enhanced Pressure Sensing Performance Based on Orientated Growth of Functional Bacterial Cellulose[J]. Advanced Fiber Materials, 2024, 6(5): 00435 Copy Citation Text show less
    References

    [1] Min J, Jung Y, Ahn J, Lee JG, Lee J, Ko SH. Recent advances in biodegradable green electronic materials and sensor applications. Adv Mater. 2023;35(52):2211273.

    [2] Bathaei MJ, Singh R, Mirzajani H, et al. Photolithography-based microfabrication of biodegradable flexible and stretchable sensors. Adv Mater. 2023;35(6):2207081.

    [3] Liu T, Wang Y, Hong M, Venezuela J, Shi W, Dargusch M. Advances in biodegradable piezoelectrics for medical implants. Nano Today. 2023;52:101945.

    [4] Min S, Kim DH, Joe DJ, et al. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv Mater. 2023;35:2301627.

    [5] Boutry CM, Kaizawa Y, Schroeder BC, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat Electron. 2018;1:314–21.

    [6] Katyal M, Singh R, Mahajan R, et al. Bacterial cellulose: Nature’s greener tool for industries. Biotechnol Appl Biochem. 2023;70(5):1629–40.

    [7] Gregory DA, Tripathi L, Fricker ATR, et al. Bacterial cellulose: A smart biomaterial with diverse applications. Mater Sci Eng R Rep. 2021;145:100623.

    [8] Pan X, Li J, Ma N, Ma X, Gao M. Bacterial cellulose hydrogel for sensors. Chem Eng J. 2023;461:142062.

    [9] Huang J, Zhao M, Hao Y, Wei Q. Recent advances in functional bacterial cellulose for wearable physical sensing applications. Adv Mater Technol. 2022;7(1):2100617.

    [10] Chen K, Li Y, Yang G, Hu S, Shi Z, Yang G. Fabric-based TENG woven with bio-fabricated superhydrophobic bacterial cellulose fiber for energy harvesting and motion detection. Adv Funct Mater. 2023;33(45):2304809.

    [11] Wang B, Yin X, Cheng R, Li J, Ying G, Chen K. Compressible, superelastic and fatigue resistant carbon nanofiber aerogels derived from bacterial cellulose for multifunctional piezoresistive sensors. Carbon. 2022;199:318–28.

    [12] Zheng X, Zhang S, Zhou M, et al. MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure. Adv Funct Mater. 2023;33(19):2214880.

    [13] Sun J, Xiu K, Wang Z, et al. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy. 2023;108:108215.

    [14] Fu Y, Li C, Cheng Y, et al. Biomass aerogel composite containing BaTiO3 nanoparticles and MXene for highly sensitive self-powered sensor and photothermal antibacterial applications. Compos Part A Appl Sci Manuf. 2023;173:107663.

    [15] Li J, Cai J, Yu J, Li Z, Ding B. The rising of fiber constructed piezo/triboelectric nanogenerators: from material selections, fabrication techniques to emerging applications. Adv Funct Mater. 2023;33:2303249.

    [16] Basset P, Beeby SP, Bowen C, et al. Roadmap on nanogenerators and piezotronics. APL Mater. 2022;10:109201.

    [17] Huang J, Zhao M, Cai Y, Zimniewska M, Li D, Wei Q. A dual-mode wearable sensor based on bacterial cellulose reinforced hydrogels for highly sensitive strain/pressure sensing. Adv Electron Mater. 2020;6(1):1900934.

    [18] Xiang Q, Zhang H, Liu Z, Zhao Y, Tan H. Engineered structural carbon aerogel based on bacterial Cellulose/Chitosan and graphene oxide/graphene for multifunctional piezoresistive sensor. Chem Eng J. 2024;480:147825.

    [19] Chen S, Wang Y, Fei B, et al. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane. Chem Eng J. 2022;430:131980.

    [20] Su T, Liu N, Lei D, et al. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano. 2022;16:8461–71.

    [21] Zhang D, Liang Q, Zhou Z, Jia Y, Chen S, Wang H. Multifunctional bacterial cellulose photothermal aerogels with multi-bonded network assisted by carbon nanotube. Chem Eng J. 2023;470:144436.

    [22] Chen Y, Deng Z, Ouyang R, et al. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy. 2021;84:105866.

    [23] Tang X, Wu C, Gan L, et al. Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins. Small. 2019;15(10):1804559.

    [24] Gong S, Zhang X, Nguyen XA, et al. Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors. Nat Nanotechnol. 2023;18:889–97.

    [25] Zhang D, Yang W, Gong W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Adv Mater. 2021;33(26):202100782.

    [26] Kaur M, Kim TH, Kim WS. New frontiers in 3D structural sensing robots. Adv Mater. 2021;33(19):2002534.

    [27] Xu J, Tat T, Yin J, et al. A textile magnetoelastic patch for self-powered personalized muscle physiotherapy. Matter. 2023;6:2235–47.

    [28] Shi HH, Pan Y, Xu L, et al. Sustainable electronic textiles towards scalable commercialization. Nat Mater. 2023;22:1294–303.

    [29] Nie B, Huang R, Yao T, et al. Textile-based wireless pressure sensor array for human-interactive sensing. Adv Funct Mater. 2019;29(22):1808786.

    [30] Ye X, Shi B, Li M, et al. All-textile sensors for boxing punch force and velocity detection. Nano Energy. 2022;97:107114.

    [31] Zhao P, Song Y, Xie P, et al. All-organic smart textile sensor for deep-learning-assisted multimodal sensing. Adv Funct Mater. 2023;33:2301816.

    [32] Cai J, Du M, Li Z. Flexible temperature sensors constructed with fiber materials. Adv Mater Technol. 2022;7:2101182.

    [33] Cai S, Xu C, Jiang D, et al. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy. 2022;93:106904.

    [34] Lv X, Liu Y, Yu J, Li Z, Ding B. Smart fibers for self-powered electronic skins. Adv Fiber Mater. 2023;5:401–28.

    [35] Zhu M, Yu J, Li Z, Ding B. Self-healing fibrous membranes. Angew Chem Inter Ed. 2022;61:e202208949.

    [36] Pyo S, Lee J, Kim W, Jo E, Kim J. Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv Funct Mater. 2019;29(35):1902484.

    [37] Zhu M, Li J, Yu J, Li Z, Ding B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Inter Ed. 2022;61:e202200226.

    [38] Zhong W, Ming X, Jiang H, et al. Full-textile human motion detection systems integrated by facile weaving with hierarchical core-shell piezoresistive yarns. ACS Appl Mater Interfaces. 2021;13(44):52901–11.

    [39] Ma Y, Ouyang J, Raza T, et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy. 2021;85:105941.

    [40] Atua JH, Atalla RH. Band assignments in the raman spectra of celluloses. Carbohydr Res. 1987;160:113–29.

    [41] Hsieh YC, Yano H, Nogi M, Eichhorn SJ. An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose. 2008;15(4):507–13.

    [42] Cheng Z, Li J, Wang B, et al. Scalable and robust bacterial cellulose carbon aerogels as reusable absorbents for high-efficiency oil/water separation. ACS Appl Bio Mater. 2020;3(11):7483–91.

    [43] Xi Y, Yang D, Liu W, Qin Y, Qiu X. Preparation of porous lignin-derived carbon/carbon nanotube composites by hydrophobic self-assembly and carbonization to enhance lithium storage capacity. Electrochim Acta. 2019;303:1–8.

    [44] Zhang Z, Li L, Qing Y, et al. Manipulation of nanoplate structures in carbonized cellulose nanofibril serogel for high-performance supercapacitor. J Phys Chem C. 2019;123(38):23374–81.

    [45] Jin M, Wu Z, Guan F, et al. Hierarchically designed three-dimensional composite structure on a cellulose-based solar steam generator. ACS Appl Mater Interfaces. 2022;14(10):12284–94.

    [46] Gao C, Liu Y, Gu F, et al. Biodegradable Ecoflex encapsulated bacterial cellulose/polypyrrole strain sensor detects motion with high sensitivity, flexibility and scalability. Chem Eng J. 2023;460:141769.

    [47] Islam SR, Yousif AHD, Estifanos HD, et al. Using various concentrations of SiO2 aerogel for oil wicking, spreading, and interception tests of 3D weft-knitted spacer fabrics. J Text I. 2022;114(8):1146–56.

    [48] Leif N, Gustav N, Albert M, Maria S. Toward flexible polymer and paper-based energy storage devices. Adv Mater. 2011;23(33):3751–69.

    [49] Fan LL, Zheng WF, Yang Y, et al. Bacterial cellulose composites (MXene@ TOBC@ PPy) for flexible supercapacitors with improved electrochemical performance. Cellulose. 2023;30:6507–21.

    [50] Huo Y, Guo D, Yang J, et al. Multifunctional bacterial cellulose nanofibers/polypyrrole (PPy) composite films for joule heating and electromagnetic interference shielding. ACS Appl Electron Mater. 2022;4:2552–60.

    [51] Maradini GD, Oliveira MP, Guanaes GM, et al. Characterization of polyester nanocomposites reinforced with conifer fiber cellulose nanocrystals. Polymers. 2020;12(12):2838.

    [52] Zhang SL, Zhou YH, Libanori A, et al. Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat Electron. 2023;6:338–48.

    [53] Wang R, Du Z, Xia Z, et al. Magnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricity. Adv Funct Mater. 2022;32(6):2107682.

    [54] Lu JL, Hu SM, Li WR, et al. A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel. ACS Nano. 2022;16:3744–55.

    [55] Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019;19(2):1143–50.

    [56] Liu W, Liu N, Yue Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small. 2018;14(15):1704149.

    [57] Gao L, Zhu C, Li L, et al. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl Mater Interfaces. 2019;11(28):25034–42.

    [58] Yang T, Mativetsky JM. Paper-based mechanical sensors enabled by folding and stacking. ACS Appl Mater Interfaces. 2019;11(29):26339–45.

    [59] Han Z, Li H, Xiao J, et al. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics. ACS Appl Mater Interfaces. 2019;11(36):33370–9.

    [60] Li S, Chu JR, Li B, Chang Y, Pan T. Handwriting iontronic pressure sensing origami. ACS Appl Mater Interfaces. 2019;11(49):46157–64.

    [61] Chen S, Song Y, Xu F. Flexible and highly Sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl Mater Interfaces. 2018;10(40):34646–54.

    [62] Zhu H, Luo H, Cai M, Song J. A multifunctional flexible tactile sensor based on resistive effect for simultaneous sensing of pressure and temperature. Adv Sci. 2024;11(6):2307693.

    [63] Xia X, Xiang Z, Gao Z, et al. Structural design and DLP 3D printing preparation of high strain stable flexible pressure sensors. Adv Sci. 2023;2304409.

    [64] Ni Y, Liu L, Huang J, et al. Rational designed microstructure pressure sensors with highly sensitive and wide detection range performance. J Mater Sci Technol. 2022;130:184–92.

    [65] Li S, Wang HM, Ma W, et al. Monitoring blood pressure and cardiac function without positioning via a deep learning–assisted strain sensor array. Sci Adv2023;9(32):eadh0615.

    [66] Yue Y, Liu N, Liu W, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy. 2018;50:79–87.

    [67] Zhao C, Fang Y, Chen H, et al. Ultrathin Mo2S3 nanowire network for high-sensitivity breathable piezoresistive electronic skins. ACS Nano. 2023;17(5):4862–70.

    [68] Meng K, Xiao X, Liu Z, et al. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv Mater. 2022;34(36):2202478.

    [69] Wu X, Luo X, Song Z, Bai Y, Zhang B, Zhang G. Ultra-robust and sensitive flexible strain sensor for real-time and wearable sign language translation. Adv Funct Mater. 2023;33(36):2303504.

    [70] Kim KK, Kim M, Pyun K, et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat Electron. 2023;6:64–75.

    [71] Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot. 2022;7(67):eabn0495.

    [72] Shen Z, Zhu X, Majidi C, Gu G. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv Mater. 2021;33(38):2102069.

    Chong Gao, Yingcun Liu, Zongxue Gu, Juan Li, Yue Sun, Wei Li, Keshuai Liu, Duo Xu, Bin Yu, Weilin Xu. Hierarchical Structured Fabrics with Enhanced Pressure Sensing Performance Based on Orientated Growth of Functional Bacterial Cellulose[J]. Advanced Fiber Materials, 2024, 6(5): 00435
    Download Citation