• Chinese Optics Letters
  • Vol. 14, Issue 3, 030604 (2016)
Biwei Pan1, Liqiang Yu1, Lu Guo1, Limeng Zhang1, Dan Lu1, Xin Chen2, Yue Wu2, Caiyun Lou2, and Lingjuan Zhao1、*
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China
  • 2Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/COL201614.030604 Cite this Article Set citation alerts
    Biwei Pan, Liqiang Yu, Lu Guo, Limeng Zhang, Dan Lu, Xin Chen, Yue Wu, Caiyun Lou, Lingjuan Zhao. 100  Gb/s all-optical clock recovery based on a monolithic dual-mode DBR laser[J]. Chinese Optics Letters, 2016, 14(3): 030604 Copy Citation Text show less
    Schematic diagram of the proposed DBR-based AOCR. MZM, Mach–Zehnder modulator; EA, electronic amplifier; OMUX, passive polarization maintaining 1×4 optical multiplexer.
    Fig. 1. Schematic diagram of the proposed DBR-based AOCR. MZM, Mach–Zehnder modulator; EA, electronic amplifier; OMUX, passive polarization maintaining 1×4 optical multiplexer.
    (a) Typical free-running optical spectrum of the dual-mode DBR laser. (b) Optical spectra of the device under different DBR currents.
    Fig. 2. (a) Typical free-running optical spectrum of the dual-mode DBR laser. (b) Optical spectra of the device under different DBR currents.
    (a) Optical spectrum of the 100 Gb/s RZ-OOK signal and (b) injection-locked dual-mode DBR laser. (c) Eye diagram of the 100 Gb/s signal. (d) Time trace of the recovered 100 GHz optical clock.
    Fig. 3. (a) Optical spectrum of the 100 Gb/s RZ-OOK signal and (b) injection-locked dual-mode DBR laser. (c) Eye diagram of the 100 Gb/s signal. (d) Time trace of the recovered 100 GHz optical clock.
    (a) Degraded 100 Gb/s injection signal with 4.1 dB OSNR. (b) Time trace of the recovered optical clock. (c) The dependence of the timing jitter of the synchronized clock on the OSNR of the injected signal.
    Fig. 4. (a) Degraded 100 Gb/s injection signal with 4.1 dB OSNR. (b) Time trace of the recovered optical clock. (c) The dependence of the timing jitter of the synchronized clock on the OSNR of the injected signal.
    (a) Eye diagrams and (b) optical spectrum of the 100 Gb/s signal after 25 km transmission. (b) Time trace of the recovered optical clock. (d) Injection-locked optical spectrum of the DBR laser.
    Fig. 5. (a) Eye diagrams and (b) optical spectrum of the 100 Gb/s signal after 25 km transmission. (b) Time trace of the recovered optical clock. (d) Injection-locked optical spectrum of the DBR laser.
    Biwei Pan, Liqiang Yu, Lu Guo, Limeng Zhang, Dan Lu, Xin Chen, Yue Wu, Caiyun Lou, Lingjuan Zhao. 100  Gb/s all-optical clock recovery based on a monolithic dual-mode DBR laser[J]. Chinese Optics Letters, 2016, 14(3): 030604
    Download Citation