
Search by keywords or author
- Acta Photonica Sinica
- Vol. 51, Issue 4, 0428001 (2022)

Fig. 1. Schematic diagram of laser measurement method for air motion parameters

Fig. 2. Inversion coordinate system with multi-laser beam for air speed measurement

Fig. 3. The schematic of direct detection

Fig. 4. The schematic of coherent detection

Fig. 5. Actual drawing of pitot tube icing

Fig. 6. Airspeed measurement system on CV990

Fig. 7. WindSceptor product of OADS Corporation

Fig. 8. Laser measurement system for air motion parameters

Fig. 9. Prototype II of Michigan Aerospace Corporation

Fig. 10. Experimental prototype of AVIC CAIC

Fig. 11. Airspeed measurement prototype of AVIC CAIC

Fig. 12. Experimental prototype of AVIC FACRI

Fig. 13. Airspeed measurement prototype of AVIC FACRI

Fig. 14. Drag cone method for airspeed calibration

Fig. 15. DC-8 aircraft and its pod

Fig. 16. Apparatus for flight test of Thales

Fig. 17. Apparatus for flight test of ONERA

Fig. 18. Diagram of wind shear

Fig. 19. The experimental prototype of NCAR

Fig. 20. Ultraviolet turbulence sensor prototype of EADS

Fig. 21. Ultraviolet anemometer of DLR
|
Table 1. Advantages and disadvantages comparison of direct and coherent detection schemes
|
Table 2. Partial performance of reported laser systems for air motion parameters

Yazhou YUE, Bin LI, Hongjie LEI. Advances and Prospects of Laser Measurement Technology for Air Motion Parameters(Invited)[J]. Acta Photonica Sinica, 2022, 51(4): 0428001
Download Citation
Set citation alerts for the article
Please enter your email address