• Optics and Precision Engineering
  • Vol. 20, Issue 12, 2686 (2012)
HU Jun-feng1,* and ZHANG Xian-min2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20122012.2686 Cite this Article
    HU Jun-feng, ZHANG Xian-min. Kinematical properties and optimal design of 3-DOF precision positioning stage[J]. Optics and Precision Engineering, 2012, 20(12): 2686 Copy Citation Text show less
    References

    [1] YU J J, ZONG G H, BI SH SH. Fully compliant mechanisms and MEMS [J]. Opt. Precision Eng., 2001, 9(1): 1-5. (in Chinese)

    [2] YU J J, ZONG G H, BI SH SH. Stiffness matrix method for displacement analysis of fully spatial compliant mechanisms [J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(3): 323-326. (in Chinese)

    [3] YUE Y, GAO F,ZHAO X CH, et al.. Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator [J]. Mechanism and Machine Theory, 2010, 45:756-771.

    [4] DON W, SUN L N, DU ZH J. Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints [J]. Precision Engineering, 2008, 32, 222-231.

    [5] OUYANG P R, TJIPTOPRODJO R C,ZHANG W J, et al.. Micro-motion devices technology: the state of arts review [J]. Int J. Adv. Manuf. Technol., 2008, 38:463-478.

    [6] TEO T J, CHEN I-Ming, YANG Guilin, et al.. A generic approximation model for analyzing large nonlinear deflection of beam-based flexure joints [J]. Precision Engineering, 2010, 34: 607-618.

    [7] HOPKINS J B, CULPEPPER M L. A screw theory basis for quantitative and graphical design tools that define layout of actuators to minimize parasitic errors in parallel flexure systems [J]. Precision Engineering, 2010, 34: 767-776.

    [8] WU T L, CHEN J H, CHANG SH H. A six-DOF prismatic-spherical-spherical parallel compliant nanopositioner [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008,55(12):2544-2551.

    [9] TIAN Y, SHIRINZADEH B, ZHANG D, et al.. Design and forward kinematics of the compliant micro-manipulator with lever mechanisms [J]. Precision Engineering, 2009, 33:466-476.

    [10] NICOLAE L, JEFFREY S N P, EDWARD O M, et al.. Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations [J]. Precision Engineering, 2002, 26: 183-192.

    [11] TIAN Y, IRINZADEH B, ZHANG D, et al.. Design and optimization of an XYZ parallel micromanipulator with flexure hinges [J]. J. Intell. Robot Syst., 2009,55: 377-402.

    [12] DONG W, SUN L N, DU Z J. Design of a precision compliant parallel positioned driven by dual piezoelectric actuators [J]. Sensors and Actuators A, 2007,135:250-256.

    [13] YAO Q, DONG J, FERREIRA P M. Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 946-961.

    [14] CHOI K B, LEE J J, HATA S. A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel [J]. Sensors and Actuators A, 2010, 161: 173-181.

    [15] KI W C, WOOK B K, YOUNG H J. A transparent polymeric flexure-hinge nanopositioner, actuated by a piezoelectric stack actuator [J]. Nanotechnology, 2011, 22: 250-256.

    [16] TIAN Y, SHIRINZADEH B, ZHANG D. A flexure-based five-bar mechanism for micro/nano manipulation [J]. Sensors and Actuators A, 2009, 153:96-104.

    [17] HUY H P, CHEN I M. Stiffness modeling of flexure parallel mechanism [J]. Precision Engineering, 2005, 29:467-478.

    [18] YU J J, PEI X, BI SH SH, et al.. State-of-arts of design method for flexure mechanisms [J]. Journal of Mechanical Engineering, 2010, 46(13): 2-13. (in Chinese)

    CLP Journals

    [1] YAN Peng, ZHANG Li-long, LIU Peng-bo. Flexure-based XY micro-positioning stage with large stroke and coupling compensation[J]. Optics and Precision Engineering, 2016, 24(4): 804

    [2] MA Li, XIE Wei, LIU Bo, SUN Li-ning. Design of micro-positioning stage with flexure hinge[J]. Optics and Precision Engineering, 2014, 22(2): 338

    [3] CUI Jing, WANG Di-Fan. Feedforward compensation control of X-Y precise positioning table using inversed-sensitive function[J]. Optics and Precision Engineering, 2015, 23(4): 1081

    [4] MA Li, YANG Bin, TIAN Ying-zhong, XIAO Jin-tao, HUA Xiao-qing, SUN Li-ning. Design of 3-DOF planar nano-positioning platform with 3-PRR structure[J]. Optics and Precision Engineering, 2017, 25(7): 1866

    [5] PAN Song, ZHANG Jian-hui, HUANG Wei-qing, SHI Yun-lai. Robust control of butterfly-shaped linear ultrasonic motor based on Takagi-Sugeno fuzzy systems[J]. Optics and Precision Engineering, 2014, 22(10): 2667

    [6] YAO Jian-tao, LI Li-jian, YANG Wei, ZHAO Yong-sheng. Analytical calculation of compliance matrix for right-circular flexure spherical hinge[J]. Optics and Precision Engineering, 2014, 22(7): 1857

    [7] HU Jun-feng, XU Gui-yang, HAO Ya-zhou. Multi-objective optimization of micro-manipulation stage based on response surface method[J]. Optics and Precision Engineering, 2015, 23(4): 1096

    [8] YOU Jing-jing, LI Cheng-gang, WU Hong-tao. Parameter identification of parallel type six-axis accelerometer[J]. Optics and Precision Engineering, 2013, 21(10): 2627

    HU Jun-feng, ZHANG Xian-min. Kinematical properties and optimal design of 3-DOF precision positioning stage[J]. Optics and Precision Engineering, 2012, 20(12): 2686
    Download Citation