• Chinese Journal of Lasers
  • Vol. 49, Issue 3, 0301003 (2022)
Tiantian Chen, Tengfei Dai, Chaoran Chen, Xiang Liu**, and Jianhua Chang*
Author Affiliations
  • School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
  • show less
    DOI: 10.3788/CJL202249.0301003 Cite this Article Set citation alerts
    Tiantian Chen, Tengfei Dai, Chaoran Chen, Xiang Liu, Jianhua Chang. Controllable All-Solid-State Pulsed Laser Based on Graphene Capacitor Devices[J]. Chinese Journal of Lasers, 2022, 49(3): 0301003 Copy Citation Text show less
    References

    [1] Chen Y F, Chien P Y, Lee C C et al. Timing jitter reduction of passively Q-switched solid-state lasers by coupling resonance between pumping and firing rates[J]. Optics Letters, 45, 2902-2905(2020).

    [2] Feng X, Liu J, Yang W et al. Broadband indium tin oxide nanowire arrays as saturable absorbers for solid-state lasers[J]. Optics Express, 28, 1554-1560(2020).

    [3] Wang S Q, Huang H T, Liu X et al. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers[J]. Optical Materials, 88, 630-634(2019).

    [4] Zhang Y J, Liu J, Cai Y W et al. Research on vibration performance of all-polarization-maintaining erbium-doped mode-locked fiber laser based on carbon nanotube[J]. Chinese Journal of Lasers, 47, 0901002(2020).

    [5] Pang Q S, Chen M, Liu Z X et al. LD end-pumped intracavity frequency doubling SESAM passively mode-locked picosecond lasers[J]. Laser Physics, 21, 1031-1034(2011).

    [6] Yang F, Li M M, Zhao S L et al. Research progress on passively Q-switched lasers based on new saturable absorption devices[J]. Laser & Optoelectronics Progress, 57, 150002(2020).

    [7] Li L, Liu J, Liu M et al. 532 nm continuous wave mode-locked Nd∶GdVO4 laser with SESAM[J]. Laser Physics Letters, 6, 113-116(2009).

    [8] Ling W J, Sun R, Chen C et al. Passively Q-switched mode-locked Tm∶LuAG laser with reflective MoS2 saturable absorber[J]. Chinese Journal of Lasers, 46, 0808002(2019).

    [9] Wang W W, Liu J, Chen F et al. 532-nm picosecond pulse generated in a passively mode-locked Nd∶ YVO4 laser[J]. Chinese Optics Letters, 7, 706-708(2009).

    [10] Cai W, Peng Q Q, Hou W et al. Picosecond passively mode-locked laser of 532 nm by reflective carbon nanotube[J]. Optics & Laser Technology, 58, 194-196(2014).

    [11] Zhao W F, Yu H, Liao M Z et al. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking[J]. Semiconductor Science and Technology, 32, 025013(2017).

    [12] Sun Z P, Hasan T, Torrisi F et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 4, 803-810(2010).

    [13] Castellanos-Gomez A, Barkelid M, Goossens A M et al. Laser-thinning of MoS2:on demand generation of a single-layer semiconductor[J]. Nano Letters, 12, 3187-3192(2012).

    [14] Wang Z T, Chen Y, Zhao C J et al. Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber[J]. IEEE Photonics Journal, 4, 869-876(2012).

    [15] Zhao G, Han S, Wang A Z et al. “Chemical weathering” exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties[J]. Advanced Functional Materials, 25, 5292-5299(2015).

    [16] Canbaz F, Kakenov N, Kocabas C et al. Generation of sub-20-fs pulses from a graphene mode-locked laser[J]. Optics Express, 25, 2834-2839(2017).

    [17] Kong C X, Zhang X, Dai T F et al. Preparation, characterization of tungsten disulfide and its application in all-solid-state green pulse laser[J]. Journal of Quantum Optics, 25, 449-455(2019).

    [18] Wang F, Zhang Y B, Tian C S et al. Gate-variable optical transitions in graphene[J]. Science, 320, 206-209(2008).

    [19] Li Z Q, Henriksen E A, Jiang Z et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 4, 532-535(2008).

    [20] Zhang Y B, Tang T T, Girit C et al. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 459, 820-823(2009).

    [21] Lee E J, Choi S Y, Jeong H et al. Active control of all-fibre graphene devices with electrical gating[J]. Nature Communication, 6, 6851-6857(2015).

    [22] Kovalchuk O, Uddin S, Lee S et al. Graphene capacitor-based electrical switching of mode-locking in all-fiberized femtosecond lasers[J]. ACS Applied Materials & Interfaces, 12, 54005-54011(2020).

    [23] Wu H C, Chien C H. High performance InGaZnO thin film transistor with InGaZnO source and drain electrodes[J]. Applied Physics Letters, 102, 062103(2013).

    [24] Zhang Z D, Wang Z S, Zhang R et al. Improvement of graphene quality synthesized by cluster ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 307, 260-264(2013).

    Tiantian Chen, Tengfei Dai, Chaoran Chen, Xiang Liu, Jianhua Chang. Controllable All-Solid-State Pulsed Laser Based on Graphene Capacitor Devices[J]. Chinese Journal of Lasers, 2022, 49(3): 0301003
    Download Citation