• Photonics Research
  • Vol. 12, Issue 11, 2462 (2024)
Minpeng Liang1,7, Lucio Claudio Andreani2,8, Anton Matthijs Berghuis1, José Luis Pura3,4..., Shunsuke Murai5, Hongguang Dong1,6, José A. Sánchez-Gil3 and Jaime Gómez Rivas1,*|Show fewer author(s)
Author Affiliations
  • 1Department of Applied Physics and Science Education, Institute for Complex Molecular Systems, and Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
  • 2Dipartimento di Fisica, Università di Pavia, 27100 Pavia, Italy
  • 3Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
  • 4GdS-Optronlab, Física de la Materia Condensada, Universidad de Valladolid, 47011 Valladolid, Spain
  • 5Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
  • 6Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310027, China
  • 7e-mail: lmpmse@163.com
  • 8e-mail: lucio.andreani@unipv.it
  • show less
    DOI: 10.1364/PRJ.528976 Cite this Article Set citation alerts
    Minpeng Liang, Lucio Claudio Andreani, Anton Matthijs Berghuis, José Luis Pura, Shunsuke Murai, Hongguang Dong, José A. Sánchez-Gil, Jaime Gómez Rivas, "Tailoring directional chiral emission from molecules coupled to extrinsic chiral quasi-bound states in the continuum," Photonics Res. 12, 2462 (2024) Copy Citation Text show less
    References

    [1] W. T. B. Kelvin. The Molecular Tactics of a Crystal(1894).

    [2] E. Petronijevic, E. M. Sandoval, M. Ramezani. Extended chiro-optical near-field response of achiral plasmonic lattices. J. Phys. Chem. C, 123, 23620-23627(2019).

    [3] E. S. A. Goerlitzer, R. Mohammadi, S. Nechayev. Chiral surface lattice resonances. Adv. Mater., 32, 2001330(2020).

    [4] S. Zhao, L. Shao, J. Wang. Chirality-selective transparency induced by lattice resonance in bilayer metasurfaces. Photonics Res., 9, 484-493(2021).

    [5] E. Petronijevic, A. Belardini, T. Cesca. Rich near-infrared chiral behavior in diffractive metasurfaces. Phys. Rev. Appl., 16, 014003(2021).

    [6] A. Movsesyan, L. V. Besteiro, X.-T. Kong. Engineering strongly chiral plasmonic lattices with achiral unit cells for sensing and photodetection. Adv. Opt. Mater., 10, 2101943(2022).

    [7] S. Qiao, Q. Liang, X. Zhang. Flexible engineering of circular dichroism enabled by chiral surface lattice resonances. APL Photonics, 7, 116104(2022).

    [8] E. S. A. Goerlitzer, M. Zapata-Herrera, E. Ponomareva. Molecular-induced chirality transfer to plasmonic lattice modes. ACS Photonics, 10, 1821-1831(2023).

    [9] A. M. Romashkina, V. B. Novikov, T. V. Murzina. Collective lattice and plasmonic resonances in the enhancement of circular dichroism in disk-rod metasurface. J. Appl. Phys., 133, 043103(2023).

    [10] Q. Ling, Q. Liang, X. Zhang. Toroidal electric dipole enabled chiral surface lattice resonances in stereo propeller metasurfaces. APL Photonics, 8, 086114(2023).

    [11] L. Cerdán, L. Zundel, A. Manjavacas. Chiral lattice resonances in 2.5-dimensional periodic arrays with achiral unit cells. ACS Photonics, 10, 1925-1935(2023).

    [12] X. Luo, X. Du, R. Huang. High-Q and strong chiroptical responses in planar metasurfaces empowered by Mie surface lattice resonances. Laser Photonics Rev., 17, 2300186(2023).

    [13] M. Manoccio, V. Tasco, F. Todisco. Surface lattice resonances in 3D chiral metacrystals for plasmonic sensing. Adv. Sci., 10, 2206930(2023).

    [14] M. Cotrufo, C. I. Osorio, A. F. Koenderink. Spin-dependent emission from arrays of planar chiral nanoantennas due to lattice and localized plasmon resonances. ACS Nano, 10, 3389-3397(2016).

    [15] M. Hentschel, M. Schäferling, X. Duan. Chiral plasmonics. Sci. Adv., 3, e1602735(2017).

    [16] C. Yan, X. Wang, T. V. Raziman. Twisting fluorescence through extrinsic chiral antennas. Nano Lett., 17, 2265-2272(2017).

    [17] K. Q. Le, S. Hashiyada, M. Kondo. Circularly polarized photoluminescence from achiral dye molecules induced by plasmonic two-dimensional chiral nanostructures. J. Phys. Chem. C, 122, 24924-24932(2018).

    [18] P. Pachidis, B. M. Cote, V. E. Ferry. Tuning the polarization and directionality of photoluminescence of achiral quantum dot films with chiral nanorod dimer arrays: Implications for luminescent applications. ACS Appl. Nano Mater., 2, 5681-5687(2019).

    [19] I. C. Seo, Y. Lim, S.-C. An. Circularly polarized emission from organic-inorganic hybrid perovskites via chiral Fano resonances. ACS Nano, 15, 13781-13793(2021).

    [20] Y. Chen, W. Du, Q. Zhang. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys., 4, 113-124(2021).

    [21] H. Ali, E. Petronijevic, G. Pellegrini. Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice. Opt. Express, 31, 14196-14211(2023).

    [22] Y. Sun, Z. Hu, K. Shi. Enhancing circularly polarized emission by a planar chiral dielectric metasurface. Adv. Opt. Mater., 11, 2300197(2023).

    [23] M. Ramamurthy, P. Pachidis, B. M. Cote. Circularly polarized photoluminescence from nanostructured arrays of light emitters. ACS Appl. Opt. Mater., 1, 491-499(2023).

    [24] C. W. Hsu, B. Zhen, A. D. Stone. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [25] S. I. Azzam, A. V. Kildishev. Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater., 9, 2001469(2021).

    [26] M. Kang, T. Liu, C. Chan. Applications of bound states in the continuum in photonics. Nat. Rev. Phys., 5, 659-678(2023).

    [27] K. Koshelev, S. Lepeshov, M. Liu. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [28] A. Kodigala, T. Lepetit, Q. Gu. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [29] M.-S. Hwang, K.-Y. Jeong, J.-P. So. Nanophotonic nonlinear and laser devices exploiting bound states in the continuum. Commun. Phys., 5, 106(2022).

    [30] A. Tittl, A. Leitis, M. Liu. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105-1109(2018).

    [31] A. Overvig, N. Yu, A. Alù. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [32] K.-H. Kim, J.-R. Kim. High-Q chiroptical resonances by quasi-bound states in the continuum in dielectric metasurfaces with simultaneously broken in-plane inversion and mirror symmetries. Adv. Opt. Mater., 9, 2101162(2021).

    [33] Y. Chen, H. Deng, X. Sha. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474-478(2023).

    [34] L. Kühner, F. J. Wendisch, A. A. Antonov. Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality. Light Sci. Appl., 12, 250(2023).

    [35] T. Shi, Z.-L. Deng, G. Geng. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun., 13, 4111(2022).

    [36] J. Wu, X. Xu, X. Su. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum. Phys. Rev. Appl., 16, 064018(2021).

    [37] W. Liu, B. Wang, Y. Zhang. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett., 123, 116104(2019).

    [38] M. V. Gorkunov, A. A. Antonov, Y. S. Kivshar. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett., 125, 093903(2020).

    [39] K. Koshelev, Y. Tang, Z. Hu. Resonant chiral effects in nonlinear dielectric metasurfaces. ACS Photonics, 10, 298-306(2023).

    [40] X. Zhang, Y. Liu, J. Han. Chiral emission from resonant metasurfaces. Science, 377, 1215-1218(2022).

    [41] Y. Lim, I. C. Seo, S. An. Maximally chiral emission via chiral quasibound states in the continuum. Laser Photonics Rev., 17, 2200611(2022).

    [42] S. Kim, S.-C. An, Y. Kim. Chiral electroluminescence from thin-film perovskite metacavities. Sci. Adv., 9, eadh0414(2023).

    [43] G. Lozano, D. J. Louwers, S. R. Rodríguez. Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl., 2, e66(2013).

    [44] I. Staude, A. E. Miroshnichenko, M. Decker. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano, 7, 7824-7832(2013).

    [45] Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko. Directional visible light scattering by silicon nanoparticles. Nat. Commun., 4, 1527(2013).

    [46] S. Wang, Q. Le-Van, T. Peyronel. Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection. ACS Photonics, 5, 2478-2485(2018).

    [47] M. S. Abdelkhalik, A. Vaskin, T. López. Surface lattice resonances for beaming and outcoupling green μLEDs emission. Nanophotonics, 12, 3553-3562(2023).

    [48] Y. Mohtashami, L. K. Heki, M. S. Wong. Metasurface light-emitting diodes with directional and focused emission. Nano Lett., 23, 10505-10511(2023).

    [49] S. Murai, D. R. Abujetas, L. Liu. Engineering bound states in the continuum at telecom wavelengths with non-Bravais lattices. Laser Photonics Rev., 16, 2100661(2022).

    [50] K. B. Dossou, L. C. Botten, A. A. Asatryan. Modal formulation for diffraction by absorbing photonic crystal slabs. J. Opt. Soc. Am. A, 29, 817-831(2012).

    [51] B. Sturmberg, K. Dossou, F. P. R. McPhedran. Emustack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method. Comput. Phys. Commun., 202, 276-286(2016).

    [52] E. Palik. Handbook of Optical Constants of Solids(1997).

    [53] L. C. Andreani, D. Gerace. Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method. Phys. Rev. B, 73, 235114(2006).

    [54] M. Minkov, I. A. D. Williamson, L. C. Andreani. Inverse design of photonic crystals through automatic differentiation. ACS Photonics, 7, 1729-1741(2020).

    [55] S. Zanotti, M. Minkov, D. Nigro. Legume: a free implementation of the guided-mode expansion method for photonic crystal slabs. Comput. Phys. Commun., 304, 109286(2024).

    [56] L. Zagaglia, S. Zanotti, M. Minkov. Polarization states and far-field optical properties in dielectric photonic crystal slabs. Opt. Lett., 48, 5017-5020(2023).

    [57] W. Chen, Q. Yang, Y. Chen. Extremize optical chiralities through polarization singularities. Phys. Rev. Lett., 126, 253901(2021).

    [58] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569-572(2003).

    [59] W. Suh, Z. Wang, S. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    Minpeng Liang, Lucio Claudio Andreani, Anton Matthijs Berghuis, José Luis Pura, Shunsuke Murai, Hongguang Dong, José A. Sánchez-Gil, Jaime Gómez Rivas, "Tailoring directional chiral emission from molecules coupled to extrinsic chiral quasi-bound states in the continuum," Photonics Res. 12, 2462 (2024)
    Download Citation