[1] Nez F, Biraben F, Felder R et al. Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium[J]. Optics Communications, 102, 432-438(1993).
[2] Millerioux Y, Touahri D, Hilico L et al. Towards an accurate frequency standard at λ778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium[J]. Optics Communications, 108, 91-96(1994).
[3] Bernard J E, Madej A A, Siemsen K J et al. Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2-5D5/2 two-photon transition in 87Rb[J]. Optics Communications, 173, 357-364(2000).
[4] Maurice V, Newman Z L, Dickerson S et al. Miniaturized optical frequency reference for next-generation portable optical clocks[J]. Optics Express, 28, 24708-24720(2020).
[5] Newman Z L, Maurice V, Fredrick C et al. High-performance, compact optical standard[J]. Optics Letters, 46, 4702-4705(2021).
[6] Newman Z L, Maurice V, Drake T et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).
[7] Hong Y, Hou X, Chen D J et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 48, 2101003(2021).
[8] Qi H H, Yang B W, Zhao H J et al. Narrow linewidth laser system for integrating sphere cold atom clock[J]. Laser & Optoelectronics Progress, 60, 1514008(2023).
[9] Xiang J F, Wang L G, Ren W et al. Frequency noise suppression of single-frequency laser with radio-frequency modulation[J]. Chinese Journal of Lasers, 44, 0501009(2017).
[10] Fan P R. Investigation on high resolution two-photon transition spectroscopy of rubidium atom[D](2017).
[11] Tu J H, Liang Y T, Lu F et al. Research on improving the short-term stability of rubidium frequency standard[J]. Journal of Astronautic Metrology and Measurement, 31, 56-58(2011).
[12] Dai Z Y, Lei T R. Calculation of two-photon transition probability without Doppler[J]. Chinese Journal of Atomic and Molecular Physics, 7, 165-167(1990).
[13] Grynberg G, Cagnac B. Doppler-free multiphotonic spectroscopy[J]. Reports on Progress in Physics, 40, 791-841(1977).
[14] Sheng D, Pérez Galván A, Orozco L A. Lifetime measurements of the 5D states of rubidium[J]. Physical Review A, 78, 062506(2008).
[15] Thomas J E, Kelly M J, Monchalin J P et al. Transit-time effects in power-broadened Doppler-free saturation resonances[J]. Physical Review A, 15, 2356-2365(1977).
[16] Terra O, Hussein H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2→5D5/2 two-photon transition in rubidium[J]. Applied Physics B, 122, 27(2016).
[17] Zhang S Y, Wu J T, Zhang Y L et al. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms[J]. Scientific Reports, 5, 15114(2015).