• Frontiers of Optoelectronics
  • Vol. 4, Issue 1, 93 (2011)
Jun ZHANG1、* and Chengchun TANG2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics (WNLO) and College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
  • show less
    DOI: 10.1007/s12200-011-0211-4 Cite this Article
    Jun ZHANG, Chengchun TANG. Quantum dot photoelectrochemical solar cells based on TiO2-SrTiO3 heterostructure nanotube array scaffolds[J]. Frontiers of Optoelectronics, 2011, 4(1): 93 Copy Citation Text show less
    References

    [1] Kamat P V. Quantum dot solar cells. semiconductor nanocrystals as light harvesters. Journal of Physical Chemistry C, 2008, 112(48): 18737-18753

    [2] Nozik A. Quantum dot solar cells. Journal of Physics of the Earth, 2002, 14(1-2): 115-120

    [3] Robel I, Subramanian V, Kuno M, Kamat P V. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 2006, 128(7): 2385-2393

    [4] Yu P, Zhu K, Norman A G, Ferrere S, Frank A J, Nozik A J. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B, 2006, 110(50): 25451-25454

    [5] Luther J M, Law M, Beard MC, Song Q, Reese MO, Ellingson R J, Nozik A J. Schottky solar cells based on colloidal nanocrystal films. Nano Letters, 2008, 8(10): 3488-3492

    [6] Weiss E A, Porter V J, Chiechi R C, Geyer S M, Bell D C, Bawendi M G, Whitesides G M. The use of size-selective excitation to study photocurrent through junctions containing single-size and multi-size arrays of colloidal CdSe quantum dots. Journal of the American Chemical Society, 2008, 130(1): 83-92

    [7] Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813-3818

    [8] Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 2004, 92(18): 186601

    [9] Schaller R D, Agranovich VM, Klimov V C. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nature Physics, 2005, 1(3): 189-194

    [10] Luther J M, Beard M C, Song Q, Law M, Ellingson R J, Nozik A J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Letters, 2007, 7(6): 1779-1784

    [11] Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G J. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Photochemistry and Photobiology A, 2006, 181(2-3): 306-313

    [12] Diguna L J, Shen Q, Kobayashi J, Toyoda T. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Applied Physics Letters, 2007, 91(2): 023116

    [13] Hodes G. Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. Journal of Physical Chemistry C, 2008, 112(46): 17778-17787

    [14] Lee Y L, Lo Y S. Highly efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe. Advanced Functional Materials, 2009, 19(4): 604-609

    [15] Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots. particulate versus tubular support architectures. Advanced Functional Materials, 2009, 19(5): 805-811

    [16] Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society, 2008, 130(4): 1124-1125

    [17] Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society, 2007, 129(14): 4136-4137

    [18] Kongkanand A, Tvrdy K, Takechi K, Kuno M K, Kamat P V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. Journal of the American Chemical Society, 2008, 130(12): 4007-4015

    [19] Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Letters, 2007, 7(6): 1793-1798

    [20] Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Gratzel M, NazeeruddinMK. CdSe Quantum dotsensitized solar cells exceeding efficiency 1% at full-sun Intensity. Journal of Physical Chemistry C, 2008, 112(30): 11600-11608

    [21] Zaban A, Micic O I, Gregg B A, Nozik A J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 1998, 14(12): 3153-3156

    [22] Plass R, Pelet S, Krueger J, Gratzel M, Bach U. Quantum dot sensitization of organic-inorganic hybrid solar cells. Journal of Physical Chemistry B, 2002, 106(31): 7578-7580

    [23] Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455-459

    [24] Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007, 7(8): 2183-2187

    [25] Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215-218

    [26] Zhu K, Neale N R, Miedaner A, Frank A J. Enhanced chargecollection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69-74

    [27] Jennings J R, Ghicov A, Peter L M, Schmuki P, Walker A B. Dyesensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. Journal of the American Chemical Society, 2008, 130(40): 13364-13372

    [28] Shankar K, Basham J I, Allam N K, Varghese O K, Mor G K, Feng X, Paulose M, Seabold J A, Choi K S, Grimes C A. Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry. Journal of Physical Chemistry C, 2009, 113(16): 6327-6359

    [29] Diamant Y, Chen S G, Melamed O, Zaban A. Core-shell nanoporous electrode for dye sensitized solar cells:the effect of the SrTiO3 shell on the electronic properties of the TiO2 core. Journal of Physical Chemistry B, 2003, 107(9): 1977-1981

    [30] Diamant Y, Chappel S, Chen S G, Melamed O, Zaban A. Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode. Coordination Chemistry Reviews, 2004, 248(13-14): 1271-1276

    [31] Bandaranayake K M P, Indika-Senevirathna M K, Prasad-Weligamuwa P M G M, Tennakone K. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coordination Chemistry Reviews, 2004, 248(13-14): 1277-1281

    [32] Nasr C, Kamat P V, Hotchandani S.. Photoelectrochemistry of composite semiconductor thin films. II. Photosensitization of SnO2/TiO2 coupled system with a ruthenium polypyridyl complex. Journal of Physical Chemistry B, 1998, 102(49): 10047-10056

    [33] Zaban A, Chen S G, Chappel S, Gregg B A. Bilayer nanoporous electrodes for dye sensitized solar cells. Chemical Communications, 2000, 14(22): 2231-2232

    [34] Wang Z S, Huang C H, Huang Y Y, Hou Y J, Xie P H, Zhang B W, Cheng H M. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chemistry of Materials, 2001, 13(2): 678-682

    [35] Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 2003, 125(2): 475-482

    [36] Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P. ZnO-A2O3 and ZnO-TiO2 core-hell nanowire dye-sensitized solar cells. Journal of Physical Chemistry B, 2006, 110(45): 22652-22663

    [37] Kang S H, Kim J Y, Kim Y, Kim H S, Sung Y E. Surface modification of stretched TiO2 nanotubes for solid-state dyesensitized solar cells. Journal of Physical Chemistry C, 2007, 111(26): 9614-9623

    [38] Lee W, Kang S H, Kim J Y, Kolekar G B, Sung Y E, Han S H. TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20(33): 335706

    [39] Zhang L, Cheng H, Zong R, Zhu Y. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. Journal of Physical Chemistry C, 2009, 113(6): 2368-2374

    [40] Fujihira M, Ohishi N, Osa T. Photocell using covalently-bound dyes on semiconductor surfaces. Nature, 1977, 268(5617): 226-228

    [41] Zhang J, Bang J H, Tang C, Kamat P V. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano, 2010, 4(1): 387-395

    [42] Zhang J, Tang C, Bang J H. CdS/TiO2-SrTiO3 heterostructure nanotube arrays for improved solar energy conversion efficiency. Electrochemistry Communications, 2010, 12(8): 1124-1128

    [43] Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Applications of Surface Science, 1985, 22-23(2): 1061-1074

    [44] Likodimos V, Stergiopoulos T, Falaras P, Kunze J, Schmuki P. Phase composition, size, orientation, and antenna effects of selfassembled anodized titania nanotube arrays: a polarized microraman investigation. Journal of Physical Chemistry C, 2008, 112(33): 12687-12696

    [45] Macák J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Edition, 2005, 44(14): 2100-2102

    [46] James D R, Liu Y S, de Mayo P, Ware W R. Distributions of fluorescence lifetimes: consequences for the photophysics of molecules adsorbed on surfaces. Chemical Physics Letters, 1985, 120(4-5): 460-465

    Jun ZHANG, Chengchun TANG. Quantum dot photoelectrochemical solar cells based on TiO2-SrTiO3 heterostructure nanotube array scaffolds[J]. Frontiers of Optoelectronics, 2011, 4(1): 93
    Download Citation