• Chinese Journal of Lasers
  • Vol. 45, Issue 6, 0607005 (2018)
Xuan Wang1、2, Zhongliang Li1、2, Nan Nan1, Yang Bu1、2, Aijun Zeng1、2, Yan Chen1、2, Liuhua Pan1、2, Yu Lu1、2, and Xiangzhao Wang1、* *
Author Affiliations
  • 1 Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL201845.0607005 Cite this Article Set citation alerts
    Xuan Wang, Zhongliang Li, Nan Nan, Yang Bu, Aijun Zeng, Yan Chen, Liuhua Pan, Yu Lu, Xiangzhao Wang. A Spectral Calibration Method in Optical Coherence Tomography Based on the Interference Signal with a Fixed Optical Path Difference[J]. Chinese Journal of Lasers, 2018, 45(6): 0607005 Copy Citation Text show less
    References

    [1] Wang X, Li Z L, Nan N et al. A method to improve sensitivity of swept source optical coherence tomography system[J]. Chinese Journal of Lasers, 44, 0807002(2017).

    [2] Pan L H, Li Z L, Wang X Z et al. Depth-dependent dispersion compensation for optical coherence tomography[J]. Acta Optica Sinica, 37, 0511002(2017).

    [3] Chen Y, Li Z, Nan N et al. Automatic spectral calibration for polarization-sensitive optical coherence tomography[J]. Optics Express, 25, 23605-23618(2017). http://europepmc.org/abstract/MED/29041312

    [4] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [5] Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002). http://biomedicaloptics.spiedigitallibrary.org/mobile/article.aspx?articleid=1101514

    [6] Park B H, Cense B, Bouma B E et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography[J]. Optics Letters, 29, 480-482(2004). http://www.ncbi.nlm.nih.gov/pubmed/15005199

    [7] Nan N, Bu P, Guo X et al. optical coherence tomography system for vivo imaging of human skin[J]. Chinese Journal of Lasers, 39, 0704002(2012).

    [8] Wang H, Gardecki J A, Ughi G J et al. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm[J]. Biomedical Optics Express, 6, 1363-1375(2015). http://www.ncbi.nlm.nih.gov/pubmed/25909020

    [9] Lu Y, Li Z L, Wang X Z et al. Development of 50 kHz intravascular swept source optical coherence tomographic system[J]. Chinese Journal of Lasers, 44, 0207001(2017).

    [10] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995). http://www.sciencedirect.com/science/article/pii/003040189500119S

    [11] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997). http://europepmc.org/abstract/med/18183195

    [12] Yun S, Tearney G, De B J et al. High-speed optical frequency-domain imaging[J]. Optics Express, 11, 2953-2963(2003). http://europepmc.org/abstract/MED/19471415

    [13] Mujat M, Park B H, Cense B et al. Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination[J]. Journal of Biomedical Optics, 12, 041205(2007). http://europepmc.org/abstract/med/17867794

    [14] Vakoc B. Yun S, de Boer J F, et al. Phase-resolved optical frequency domain imaging[J]. Optics Express, 13, 5483-5493(2005).

    [15] Choma M A, Hsu K, Izatt J A. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source[J]. Journal of Biomedical Optics, 10, 044009(2005). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ025585193

    [16] Huber R, Wojtkowski M, Fujimoto J G et al. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm[J]. Optics Express, 13, 10523-10538(2005). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-26-10523

    [17] Xi J, Huo L, Li J et al. Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography[J]. Optics Express, 18, 9511-9517(2010). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404862

    [18] Wu T, Ding Z H, Wang K et al. Swept source optical coherence tomography based on non-uniform discrete Fourier transform[J]. Chinese Optics Letters, 7, 941-944(2009). http://www.opticsjournal.net/Articles/Abstract?aid=OJ091016000128FbHeKg

    [19] Yasuno Y, Madjarova V D, Makita S et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments[J]. Optics Express, 13, 10652-10664(2005). http://europepmc.org/abstract/MED/19503280

    [20] Wu T, Ding Z, Wang L et al. Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography[J]. Optics Express, 19, 18430-18439(2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-19-18430

    CLP Journals

    [1] Jingyou Liu, Feng Lei. Measurement of Lens-Center Thickness Based on Low-Coherence Interference with Transmitted Illumination[J]. Laser & Optoelectronics Progress, 2019, 56(12): 121201

    Xuan Wang, Zhongliang Li, Nan Nan, Yang Bu, Aijun Zeng, Yan Chen, Liuhua Pan, Yu Lu, Xiangzhao Wang. A Spectral Calibration Method in Optical Coherence Tomography Based on the Interference Signal with a Fixed Optical Path Difference[J]. Chinese Journal of Lasers, 2018, 45(6): 0607005
    Download Citation