• Acta Photonica Sinica
  • Vol. 50, Issue 8, 0850209 (2021)
Yiqi FANG and Yunquan LIU
Author Affiliations
  • State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing100871, China
  • show less
    DOI: 10.3788/gzxb20215008.0850209 Cite this Article
    Yiqi FANG, Yunquan LIU. Progress on the Interaction Between Intense Spatially Structured Light Fields and Atoms (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850209 Copy Citation Text show less
    References

    [1] Qihuang GONG, Wei ZHAO. Ultrafast science to capture ultrafast motions. Ultrafast Science, 2021, 9765859(2021).

    [2] Yindong HUANG, Jing ZHAO, Zheng SHU et al. Ultrafast hole deformation revealed by molecular attosecond interferometry. Ultrafast Science, 2021, 9837107(2021).

    [3] E K DAMON, R G TOMLINSON. Observation of ionization of gases by a ruby laser. Applied Optics, 2, 546-547(1963).

    [4] L V KELDYSH. Ionization in the field of a strong electromagnetic wave. Soviet Physics JETP, 20, 1307-1314(1965).

    [5] M LEWENSTEIN, P BALCOU, M Y IVANOV et al. Theory of high- harmonic generation by low frequency laser fields. Physical Review A, 49, 2117(1987).

    [6] G MOLINA-TERRIZA, J P TORRES, L TORNER. Twisted photons. Nature Physics, 3, 305(2007).

    [7] D NAIDOO, F S ROUX, A DUDLEY et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photonics, 10, 327-332(2016).

    [8] N CHATTRAPIBAN, E A ROGERS, D COFIELD et al. Generation of nondiffracting Bessel beams by use of a spatial light modulator. Optics Letters, 28, 2183-2185(2003).

    [9] G A SIVILOGLOU, J BROKY, A DOGARIU et al. Observation of accelerating Airy beams. Physical Review Letters, 99, 213901(2007).

    [10] H KOGELNIK, T LI. Laser beams and resonators. Applied Optics, 5, 1550-1567(1966).

    [11] M PADGETT, J COURTIAL, L ALLEN. Light's orbital angular momentum. Physics Today, 57, 35-40(2014).

    [12] A M YAO, M J PADGETT. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 3, 161-204(2011).

    [13] A V CARPENTIER, H MICHINEL, J R SALGUEIRO et al. Making optical vortices with computer-generated holograms. American Journal of Physics, 76, 916-921(2008).

    [14] A KUMAR, P VAITY, Y KRISHNA et al. Engineering the size of dark core of an optical vortex. Optics and Lasers in Engineering, 48, 276-281(2010).

    [15] M PADGETT, J COURTIAL, L ALLEN. Light's orbital angular momentum. Physics Today, 57, 35-40(2004).

    [16] X CAI, J WANG, M J STRAIN et al. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [17] Q ZHAN. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 1, 1-57(2009).

    [18] D NAIDOO, FS ROUX, A DUDLEY et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photonics, 10, 327-332(2016).

    [19] G L YUDIN, M Y IVANOV. Nonadiabatic tunnel ionization: looking inside a laser cycle. Physical Review A, 64(2001).

    [20] M MEYER, D CUBAYNES, D GLIJER et al. Polarization control in two-color above-threshold ionization of atomic helium. Physical Review Letters, 101, 193002(2008).

    [21] M HAN, P GE, Y SHAO et al. Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity. Physical Review Letters, 119(2017).

    [22] Y FANG, Z GUO, P GE et al. Strong-field photoionization of intense laser fields by controlling optical singularities. Science China Physics, 64, 274211(2021).

    [23] M BABIKER, C R BENNETT, D L ANDREWS et al. Orbital angular momentum exchange in the interaction of twisted light with molecules. Physical Review Letters, 89, 143601(2002).

    [24] A PICÓN, A BENSENY, J MOMPART et al. Transferring orbital and spin angular momenta of light to atoms. New Journal of Physics, 12(2010).

    [25] A PICÓN, J MOMPART, ALDANAJRV DE et al. Photoionization with orbital angular momentum beams. Optics Express, 18, 3660-3671(2010).

    [26] T KANEYASU, Y HIKOSAKA, M FUJIMOTO et al. Limitations in photoionization of helium by an extreme ultraviolet optical vortex. Physical Review A, 95(2017).

    [27] A PICÓN, A BENSENY, J MOMPART et al. Transferring orbital and spin angular momenta of light to atoms. New Journal of Physics, 12(2010).

    [28] D SEIPT, R A MÜLLER, A SURZHYKOV et al. Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light. Physical Review A, 94(2016).

    [29] W PAUFLER, B BÖNING, S FRITZSCHE. Strong-field ionization with twisted laser pulses. Physical Review A, 97(2018).

    [30] B BÖNING, W PAUFLER, S FRITZSCHE. Above-threshold ionization by few-cycle Bessel pulses carrying orbital angular momentum. Physical Review A, 98(2018).

    [31] R A MÜLLER, D SEIPT, R BEERWERTH et al. Photoionization of neutral atoms by X waves carrying orbital angular momentum. Physical Review A, 94(2016).

    [32] G DE NINNO, J WTZEL, P R RIBI et al. Photoelectric effect with a twist. Nature Photonics, 14, 554-558(2020).

    [33] N SHITRIT, I YULEVICH, E MAGUID et al. Spin-optical metamaterial route to spin-controlled photonics. Science, 340, 724-726(2013).

    [34] D HAEFNER, S SUKHOV, A DOGARIU. Spin hall effect of light in spherical geometry. Physical Review Letters, 102, 123903(2009).

    [35] Y ZHAO, J S EDGAR et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Physical Review Letters, 99(2017).

    [36] S FU, C GUO, G LIU et al. Spin-orbit optical Hall effect. Physical Review Letters, 123, 243904(2019).

    [37] G ARANEDA, S WALSER, Y COLOMBE et al. Wavelength-scale errors in optical localization due to spin-orbit coupling of light. Nature Physics, 15, 17-21(2019).

    [38] D PAN, H WEI, L GAO et al. Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits. Physical Review Letters, 117, 166803(2016).

    [39] M LI, Y CAI, S YAN et al. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams. Physical Review A, 97(2018).

    [40] L HAN, S LIU, P LI et al. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams. Physical Review A, 97(2018).

    [41] K M DORNEY, L REGO, NJ BROOKS et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation. Nature Photonics, 13, 123-130(2019).

    [42] S TSESSES, K COHEN, E OSTROVSKY et al. Spin-orbit interaction of light in plasmonic lattices. Nano Letters, 19, 4010-4016(2019).

    [43] Y FANG, M HAN, P GE et al. Photoelectronic mapping of the spin-orbit interaction of intense light fields. Nature Photonics, 15, 115-120(2021).

    [44] J ULLRICH. Cold target recoil ion momentum spectroscopy. Journal of Physics B, 30, 2917-2974(1997).

    [45] F CARDANO, E KARIMI, L MARRUCCI et al. Generation and dynamics of optical beams with polarization singularities. Optics Express, 21, 8815-8820(2013).

    [46] M M LIU, Y SHAO, M HAN et al. Energy-and momentum-resolved photoelectron spin polarization in multiphoton ionization of Xe by circularly polarized fields. Physical Review Letters, 120(2018).

    [47] S P GORESLAVSKI, G G PAULUS, S V POPRUZHENKO et al. Coulomb asymmetry in above-threshold ionization. Physical Review Letters, 93, 233002(2004).

    [48] P B CORKUM. Plasma perspective on strong field multiphoton ionization. Physical Review Letters, 71, 1994(1993).

    [49] M ZÜRCH, C KERN, P HANSINGER et al. Strong-field physics with singular light beams. Nature Physics, 8, 743-746(2012).

    [50] C HERNÁNDEZ-GARCÍA, A PICÓN, ROMÁN JSAN et al. Attosecond extreme ultraviolet vortices from high-order harmonic generation. Physical Review Letters, 111(2013).

    [51] G GARIEPY, J LEACH, K T KIM et al. Creating high-harmonic beams with controlled orbital angular momentum. Physical Review Letters, 113, 153901(2014).

    [52] R GÉNEAUX, A CAMPER, T AUGUSTE et al. Ruchon Synthesis and characterization of attosecond light vortices in the extreme ultraviolet. Nature Communication, 7, 12583(2016).

    [53] L REGO, J S ROMÁN, A PICÓN et al. Nonperturbative twist in the generation of extreme-ultraviolet vortex beams. Physical Review Letters, 117, 163202(2016).

    [54] F KONG, C ZHANG, F BOUCHARD et al. Controlling the orbital angular momentum of high harmonic vortices. Nature Communication, 8, 14970(2017).

    [55] D GAUTHIER, P R RIBIČ, G ADHIKARY et al. Tunable orbital angular momentum in high-harmonic generation. Nature Communication, 8, 14971(2017).

    [56] E PISANTY, L REGO, ROMÁN JSAN et al. Conservation of torus-knot angular momentum in high-order harmonic generation. Nature Photonics, 122, 203201(2019).

    [57] L REGO, K M DORNEY, N J BROOKS et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364(2019).

    [58] C HERNÁNDEZ-GARCÍA, A TURPIN, ROMÁN JSAN et al. Extreme ultraviolet vector beams driven by infrared lasers. Optica, 4, 520-526(2017).

    [59] F KONG, C ZHANG, H LAROCQUE et al. Spin constrained orbital angular momentum control in high-harmonic generation. Physical Review Research, 1(2019).

    [60] F KONG, C ZHANG, H LAROCQUE et al. Vectorizing the spatial structure of high-harmonic radiation from gas. Nature Communication, 2019, 2020(2019).

    [61] D GAUTHIER, S KAASSAMANI, D FRANZ et al. Orbital angular momentum from semiconductor high-order harmonics. Optics Letter, 44, 546-549(2019).

    Yiqi FANG, Yunquan LIU. Progress on the Interaction Between Intense Spatially Structured Light Fields and Atoms (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850209
    Download Citation