• Frontiers of Optoelectronics
  • Vol. 7, Issue 2, 220 (2014)
I-Chen HO1、* and Xi-Cheng ZHANG2、3
Author Affiliations
  • 1Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
  • 2The Institute of Optics, University of Rochester, Rochester, NY 14627-0186, USA
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-014-0398-2 Cite this Article
    I-Chen HO, Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Frontiers of Optoelectronics, 2014, 7(2): 220 Copy Citation Text show less
    References

    [1] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

    [2] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005-1–075005-4

    [3] Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

    [4] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001-1–093001-4

    [5] Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903-1–103903-4

    [6] Karpowicz N, Dai J M, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne timedomain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131-1–011131-3

    [7] Ho I C, Guo X, Zhang X C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express, 2010, 18(3): 2872–2883

    [8] Hu B B, Nuss M C. Imaging with terahertz waves. Optics Letters, 1995, 20(16): 1716–1718

    [9] Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging. IEEE Journal on Selected Topics in Quantum Electronics, 1996, 2(3): 679–692

    [10] Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33

    [11] Grischkowsky D, Keiding S, Exter M V, Fattinger Ch. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics, 1990, 7(10): 2006–2015

    [12] Nuss M C, Auston D H, Capasso F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Physical Review Letters, 1987, 58(22): 2355–2358

    [13] Stepanov A G, Hebling J, Kuhl J. Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts. Applied Physics Letters, 2003, 83(15): 3000–3002

    [14] Yeh K L, Hoffmann M C, Hebling J, Nelson K A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121

    [15] McLaughlin C V, Hayden L M, Polishak B, Huang S, Luo J, Kim T D, Jen A K Y. Wideband 15 THz response using organic electrooptic polymer emitter-sensor pairs at telecommunication wavelengths. Applied Physics Letters, 2008, 92(15): 151107-1–151107-3

    [16] Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

    [17] Bartel T, Gaal P, Reimann K, Woerner M, Elsaesser T. Generation of single-cycle THz transients with high electric-field amplitudes. Optics Letters, 2005, 30(20): 2805–2807

    [18] Lu X, Karpowicz N, Zhang X C. Broadband terahertz detection with selected gases. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A66–A73

    [19] Ronne C, Thrane L, Astrand P O, Wallqvist A, Mikkelsen K V, Keiding S R. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. Journal of Chemical Physics, 1997, 107(14): 5319–5351

    [20] Hashimshony D, Geltner I, Cohen G, Avitzour Y, Zigler A, Smith C. Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy. Journal of Applied Physics, 2001, 90(11): 5778–5781

    [21] Shon C H, Chong W Y, Jeon S G, Kim G J, Kim J I, Jin Y S. High speed terahertz pulse imaging in the reflection geometry and image quality enhancement by digital image processing. International Journal of Infrared and Millimeter Waves, 2008, 29(1): 79–88

    [22] Khazan M, Meissner R,Wilke I. Convertible transmission-reflection time-domain terahertz spectrometer. Review of Scientific Instruments, 2001, 72(8): 3427–3430

    [23] Pashkin A, Kempa M, Nemec H, Kadlec F, Kuzel P. Phase-sensitive time-domain terahertz reflection spectroscopy. Review of Scientific Instruments, 2003, 74(11): 4711–4717

    [24] Nashima S, Morikawa O, Takata K, Hangyo M. Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy. Applied Physics Letters, 2001, 79(24): 3923–3925

    [25] Jeon T I, Grischkowsky D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Applied Physics Letters, 1998, 72(23): 3032–3034

    [26] Watanabe S, Kondo R, Kagoshima S, Shimano R. Spin-densitywave gap in (TMTSF)2PF6 probed by reflection-type terahertz timedomain spectroscopy. Physica Status Solidi. B, Basic Research, 2008, 245(12): 2688–2691

    [27] Palik E D, ed. Silicon (Si), Calcium Carbonate, Calcite (CaCO3), Indium Arsenide (InAs), and Indium Antimonide (InSb) in Handbook of Optical Constants of Solids. New York: Elsevier, 1998

    [28] Naftaly M, Dudley R. Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Optics Letters, 2009, 34(8): 1213–1215

    [29] Hase M, Kitajima M, Constantinescu A M, Petek H. The birth of a quasiparticle in silicon observed in time-frequency space. Nature, 2003, 426(6962): 51–54

    [30] Cheville R A, Grischkowsky D. Far-infrared terahertz time-domain spectroscopy of flames. Optics Letters, 1995, 20(15): 1646–1648

    [31] Podobedov V B, Plusquellic D F, Siegrist K E, Fraser G T, Ma Q, Tipping R H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(3): 458–467

    [32] Liu J, Zhang X C. Birefringence and absorption coefficients of alpha barium borate in terahertz range. Journal of Applied Physics, 2009, 106(2): 023107-1–023107-5

    [33] Akturk S, Couairon A, Franco M, Mysyrowicz A. Spectrogram representation of pulse self compression by filamentation. Optics Express, 2008, 16(22): 17626–17636

    [34] Bignell L J, Lewis R A. Reflectance studies of candidate THz emitters. Journal of Materials Science Materials in Electronics, 2009, 20(1): 326–331

    [35] Wu Q, Sun F G, Campbell P, Zhang X C. Dynamic range of an electro-optic field sensor and its imaging applications. Applied Physics Letters, 1996, 68(23): 3224–3326

    [36] Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C. A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy. Journal of Applied Physics, 2001, 89(4): 2357–2359

    [37] Sze S M, Ng K K. Physics of Semiconductor Devices. New Jersey: John Wiley & Sons, 2006

    [38] Dumke W P. Theory of avalanche breakdown in InSb and InAs. Physical Review, 1968, 167(3): 783–789

    [39] Rode D L. Electron transport in InSb, InAs, and InP. Physical Review B: Condensed Matter and Materials Physics, 1971, 3(10): 3287–3299

    [40] Brennan K, Hess K. High field transport in GaAs, InP and InAs. Solid-State Electronics, 1984, 27(4): 347–357

    [41] Brennan K F, Mansour N S. Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe. Journal of Applied Physics, 1991, 69(11): 7844–7847

    [42] Ganichev S D, Diener J, Yassievich I N, Prettl W. Poole-Frenkel effect in terahertz electromagnetic fields. Europhysics Letters, 1995, 29(4): 315–320

    [43] Markelz A G, Asmar N G, Brar B, Gwinn E G. Interband impact ionization by terahertz illumination of InAs heterostructures. Applied Physics Letters, 1996, 69(26): 3975–3977

    [44] Devreese J T, van Welzenis R G. Impact ionisation probability in InSb. Applied Physics A, Solids and Surfaces, 1982, 29(3): 125–132

    [45] Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629

    [46] Hoffmann M C, Hebling J, Hwang H Y, Yeh K L, Nelson K A. Impact ionization in InSb probed by terahertz pump—terahertz probe spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(16): 161201-1–161201-4

    [47] Razzari L, Su F H, Sharma G, Blanchard F, Ayesheshim A, Bandulet H C, Morandotti R, Kieffer J C, Ozaki T, Reid M, Hegmann F A. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(19): 193204-1–193204-4

    [48] Wen H, Wiczer M, Lindenberg A M. Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(12): 125203

    [49] Arabshahi H, Golafrooz S. Monte Carlo based calculation of electron transport properties in bulk InAs, AlAs and InAlAs. Bulgarian Journal of Physics, 2010, 37(4): 215–222

    [50] Frohlich H. Electrons in lattice fields. Advances in Physics, 1954, 3(11): 325–361

    [51] Kuehn W, Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R. Coherent ballistic motion of electrons in a periodic potential. Physical Review Letters, 2010, 104(14): 146602

    [52] Kuehn W, Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R. Terahertz-induced interband tunneling of electrons in GaAs. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(7): 075204-1–075204-8

    [53] Gaal P, Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature, 2007, 450(7173): 1210–1213

    [54] Meinert G, Banyai L, Gartner P. Classical polarons in a constant electric field. Physical Review B: Condensed Matter and Materials Physics, 2001, 63(24): 245203-1–245203-8

    [55] Banyai L. Motion of a classical polaron in a dc electric field. Physical Review Letters, 1993, 70(11): 1674–1677

    [56] Ho I C, Zhang X C. Driving intervalley scattering and impact ionization in InAs with intense terahertz pulses. Applied Physics Letters, 2011, 98(24): 241908-1–241908-3

    [57] Koteles E S, DatarsWR, Dolling G. Far-infrared phonon absorption in InSb. Physical Review B: Condensed Matter and Materials Physics, 1974, 9(2): 572–582

    [58] Kiefer W, Richter W, Cardona M. Second-order Raman scattering in InSb. Physical Review B: Condensed Matter and Materials Physics, 1975, 12(6): 2346–2354

    [59] Carles R, Saint-Cricq N, Renucci J B, Renucci M A, Zwick A. Second-order Raman scattering in InAs. Physical Review B: Condensed Matter and Materials Physics, 1980, 22(10): 4804–4815

    [60] Borcherds P H, Kunc K. The lattice dynamics of indium pnictides. Journal of Physical Chemistry, 1978, 11(20): 4145–4155

    [61] Smith E, Dent G. Modern Raman Spectroscopy. West Sussex: John Wiley & Sons, 2005

    [62] Hecht E. Optics. San Francisco: Addison Wesley, 2002

    I-Chen HO, Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Frontiers of Optoelectronics, 2014, 7(2): 220
    Download Citation