• Acta Physica Sinica
  • Vol. 68, Issue 7, 070201-1 (2019)
Bo Yu1、2, Wei Liang2, Jiao Jiao1, Xiao-Lu Kang2, and Qing Zhao1、*
Author Affiliations
  • 1Center for Information Geoscience, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2Shanghai Institute of Space Propulsion, Shanghai 201112, China
  • show less
    DOI: 10.7498/aps.68.20181999 Cite this Article
    Bo Yu, Wei Liang, Jiao Jiao, Xiao-Lu Kang, Qing Zhao. Critical breakdown path under low-pressure and slightly uneven electric field gap[J]. Acta Physica Sinica, 2019, 68(7): 070201-1 Copy Citation Text show less
    Schematic diagram of the mesh grid generation in nonparallel two-electrode gap典型非平行电极间的计算节点划分示意图
    Fig. 1. Schematic diagram of the mesh grid generation in nonparallel two-electrode gap典型非平行电极间的计算节点划分示意图
    Computational method of the in the gap of non-uniform pressure distribution间隙压强不均布时的计算方法
    Fig. 2. Computational method of the in the gap of non-uniform pressure distribution 间隙压强不均布时的 计算方法
    The computational stability of DCP model as a function of N0: (a) n0 = 1; (b) n0 = 10; (c) n0 = 50; (d) n0 = 100; (e) n0 = 200; (f) n0 = 500 (An example of case 1, gap pressure: 60 Pa, critical breakdown voltage: 345 V )DCP计算结果稳定性随N0的依变关系(a) n0 = 1; (b) n0 = 10; (c) n0 = 50; (d) n0 = 100; (e) n0 = 200; (f) n0 = 500 (case 1, 间隙压强60 Pa, 临界击穿电压345 V)
    Fig. 3. The computational stability of DCP model as a function of N0: (a) n0 = 1; (b) n0 = 10; (c) n0 = 50; (d) n0 = 100; (e) n0 = 200; (f) n0 = 500 (An example of case 1, gap pressure: 60 Pa, critical breakdown voltage: 345 V ) DCP计算结果稳定性随N0的依变关系(a) n0 = 1; (b) n0 = 10; (c) n0 = 50; (d) n0 = 100; (e) n0 = 200; (f) n0 = 500 (case 1, 间隙压强60 Pa, 临界击穿电压345 V)
    The computational deviation of total ionization number in one path at different : (a) Potential path of No.1; (b) potential path of No.21路径总电离次数的计算值随变化的偏差 (a) No.1候选路径; (b) No.21候选路径
    Fig. 4. The computational deviation of total ionization number in one path at different : (a) Potential path of No.1; (b) potential path of No.21 路径总电离次数的计算值随 变化的偏差 (a) No.1候选路径; (b) No.21候选路径
    A diagram of the test layout击穿试验系统布置
    Fig. 5. A diagram of the test layout击穿试验系统布置
    VI-t curve of the discharge process in case 1放电过程的VI-t曲线(数据来自case 1工况)
    Fig. 6. VI-t curve of the discharge process in case 1 放电过程的VI-t曲线(数据来自case 1工况)
    The geometry and potential path generation in the laddered plate electrode (f = 3.97)圆片阶梯电极的结构及候选路径划分(f = 3.97)
    Fig. 7. The geometry and potential path generation in the laddered plate electrode (f = 3.97) 圆片阶梯电极的结构及候选路径划分(f = 3.97)
    The comparison of the calculation and test results in case 1 (working medium: Xe)Case 1试验与计算结果对比(气体工质: Xe)
    Fig. 8. The comparison of the calculation and test results in case 1 (working medium: Xe)Case 1试验与计算结果对比(气体工质: Xe)
    The relevant information of the MPDT: (a) Physical photograph; (b) the electrode geometry and potential path generationMPDT电极的相关信息 (a)实物照片; (b)电极结构及候选路径划分(f = 2.47)
    Fig. 9. The relevant information of the MPDT: (a) Physical photograph; (b) the electrode geometry and potential path generationMPDT电极的相关信息 (a)实物照片; (b)电极结构及候选路径划分(f = 2.47)
    The comparison of the calculation and test results in case 2 (working medium: Ar)Case 2试验与计算结果对比(气体工质: Ar)
    Fig. 10. The comparison of the calculation and test results in case 2 (working medium: Ar)Case 2试验与计算结果对比(气体工质: Ar)
    The input conditions and calculation results in case 3 (working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distributionCase 3的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 2.45); (b)V-p曲线的计算结果及起始路径分布
    Fig. 11. The input conditions and calculation results in case 3 (working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distribution Case 3的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 2.45); (b)V-p曲线的计算结果及起始路径分布
    The input conditions and calculation results in case 4(working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distributionCase 4的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 3.76); (b)V-fr曲线的计算结果及起始路径分布
    Fig. 12. The input conditions and calculation results in case 4(working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distribution Case 4的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 3.76); (b)V-fr曲线的计算结果及起始路径分布
    The input conditions and calculation results in case 5 (working medium: Ar): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distributionCase 5的计算输入条件及计算结果(气体工质: Ar): (a) 电极结构及候选路径划分(f = 3.43); (b) V-p曲线的计算结果及起始路径分布
    Fig. 13. The input conditions and calculation results in case 5 (working medium: Ar): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distribution Case 5的计算输入条件及计算结果(气体工质: Ar): (a) 电极结构及候选路径划分(f = 3.43); (b) V-p曲线的计算结果及起始路径分布
    The input conditions and calculation results in case 6(working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distributionCase 6的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 2.84); (b)V-p曲线的计算结果及起始路径分布
    Fig. 14. The input conditions and calculation results in case 6(working medium: Xe): (a) The electrode geometry and potential path generation; (b) the calculation results of the V-p curve and the critical path distribution Case 6的计算输入条件及计算结果(气体工质: Xe) (a)电极结构及候选路径划分(f = 2.84); (b)V-p曲线的计算结果及起始路径分布
    The formation reason of the entire V-p curve in the whole gap of case 3整个电极的V-p曲线形成原因(case 3)
    Fig. 15. The formation reason of the entire V-p curve in the whole gap of case 3 整个电极的V-p曲线形成原因(case 3)
    The ionization collision number distribution at different gap pressures in case 3: (a) p = 40 Pa; (b) p = 80 Pa不同压强下电极间隙的电离碰撞次数分布(case 3) (a) p = 40 Pa; (b) p = 80 Pa
    Fig. 16. The ionization collision number distribution at different gap pressures in case 3: (a) p = 40 Pa; (b) p = 80 Pa 不同压强下电极间隙的电离碰撞次数分布(case 3) (a) p = 40 Pa; (b) p = 80 Pa
    The distribution of ,and at different gap pressures and different potential paths in case 3: (a) The average , p = 40 Pa; (b) the average , p = 80 Pa; (c) the average , p = 40 Pa; (d) the average , p = 80 Pa; (e) the average , p = 40 Pa; (f) the average , p = 80 Pa, 和在不同压强、不同候选路径上的分布规律(case 3) (a)平均, p = 40 Pa; (b)平均, p = 80 Pa; (c)平均, p = 40 Pa; (d)平均, p = 80 Pa; (e)平均, p = 40 Pa; (f)各节点的平均, p = 80 Pa
    Fig. 17. The distribution of , and at different gap pressures and different potential paths in case 3: (a) The average , p = 40 Pa; (b) the average , p = 80 Pa; (c) the average , p = 40 Pa; (d) the average , p = 80 Pa; (e) the average , p = 40 Pa; (f) the average , p = 80 Pa , 和 在不同压强、不同候选路径上的分布规律(case 3) (a)平均 , p = 40 Pa; (b)平均 , p = 80 Pa; (c)平均 , p = 40 Pa; (d)平均 , p = 80 Pa; (e)平均 , p = 40 Pa; (f)各节点的平均 , p = 80 Pa
    The excitation collision number distribution at different gap pressures in case 3: (a) p = 40 Pa; (b) p = 80 Pa不同压强下电极间隙的激发碰撞次数分布(case 3) (a) p = 40 Pa; b) p = 80 Pa
    Fig. 18. The excitation collision number distribution at different gap pressures in case 3: (a) p = 40 Pa; (b) p = 80 Pa 不同压强下电极间隙的激发碰撞次数分布(case 3) (a) p = 40 Pa; b) p = 80 Pa
    碰撞类型碰撞截面公式/m2
    弹性碰撞$1.699 \times {10^{ - 19}}$${E_{k,e}} \leqslant 0.159\; {\rm{ eV}}$
    $(0.076E_{k,e}^2 - 0.345E_{k,e}^{1.5} + 0.585{E_{k,e}} - 0.427E_{k,e}^{0.5} + 0.114)\times {10^{ - 17}}$$0.16\; {\rm{ eV}} < {E_{k,e}} \leqslant 2.8\; {\rm{ eV}}$
    $( - 0.002E_{k,e}^2 + 0.03E_{k,e}^{1.5} - 0.166{E_{k,e}} + 0.402E_{k,e}^{0.5} - 0.317)\times {10^{ - 17}}$$2.8\; {\rm{ eV}} < {E_{k,e}} \leqslant 24.7\; {\rm{ eV}}$
    $( - 0.0022E_{k,e}^{1.5} + 0.043{E_{k,e}} - 0.28567E_{k,e}^{0.5} + 0.6518)\times {10^{ - 17}}$$24.7\; {\rm{ eV}} < {E_{k,e}} \leqslant 50\; {\rm{ eV}}$
    $0.00064 \times {10^{ - 17}}$${E_{k,e}} > 50\; {\rm{ eV}}$
    激发碰撞$0.0$${E_{k,e}} \leqslant 8.4\; {\rm{ eV}}$
    $(0.002E_{k,e}^2 - 0.023E_{k,e}^{1.5} + 0.098{E_{k,e}} - 0.188E_{k,e}^{0.5} + 0.135)\times {10^{ - 16}}$$8.4\; {\rm{ eV}} < {E_{k,e}} \leqslant 11\; {\rm{ eV}}$
    $(0.0007E_{k,e}^2 - 0.012E_{k,e}^{1.5} + 0.08{E_{k,e}} - 0.23E_{k,e}^{0.5} + 0.23)\times {10^{ - 17}}$$11\; {\rm{ eV}} < {E_{k,e}} \leqslant 25\; {\rm{ eV}}$
    $\begin{gathered}(0.1 \times {10^{ - 6}}E_{k,e}^2 + 0.8 \times {10^{ - 5}}E_{k,e}^{1.5} - 0.0002{E_{k,e}} + 0.002E_{k,e}^{0.5} + 0.001)\hfill \\ \times {10^{ - 17}} \hfill \\ \end{gathered} $$25\; {\rm{ eV}} < {E_{k,e}} \leqslant 500\; {\rm{ eV}}$
    电离碰撞$0.0$${E_{k,e}} \leqslant 12.1\; {\rm{ eV}}$
    $(0.00136E_{k,e}^2 - 0.0226E_{k,e}^{1.5} + 0.14{E_{k,e}} - 0.38E_{k,e}^{0.5} + 0.387)\times {10^{ - 17}}$$12.1\; {\rm{ eV}} < {E_{k,e}} \leqslant 20\; {\rm{ eV}}$
    $( - 0.0006E_{k,e}^2 + 0.014E_{k,e}^{1.5} - 0.133{E_{k,e}} + 0.574E_{k,e}^{0.5} - 0.93)\times {10^{ - 17}}$$20\; {\rm{ eV}} < {E_{k,e}} \leqslant 44\; {\rm{ eV}}$
    $( - 1.6 \times {10^{ - 6}}E_{k,e}^2 + 0.1E_{k,e}^{1.5} - 0.024{E_{k,e}} + 0.022E_{k,e}^{0.5} - 0.02)\times {10^{ - 17}}$$44\; {\rm{ eV}} < {E_{k,e}} \leqslant 360\; {\rm{ eV}}$
    Table 1.

    The e-Xe collision cross-section[18].

    e-Xe的碰撞截面公式[18]

    Bo Yu, Wei Liang, Jiao Jiao, Xiao-Lu Kang, Qing Zhao. Critical breakdown path under low-pressure and slightly uneven electric field gap[J]. Acta Physica Sinica, 2019, 68(7): 070201-1
    Download Citation