• Frontiers of Optoelectronics
  • Vol. 1, Issue 1, 134 (2008)
Guozhi JIA1, Jianghong YAO1、*, Yongchun SHU1, and Zhanguo WANG1、2
Author Affiliations
  • 1The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, Tianjin Key Laboratory of Photonics Materials and Technology for Information Science, TEDA Applied Physics School, Nankai University, Tianjin 300475, China
  • 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1007/s12200-008-0033-1 Cite this Article
    Guozhi JIA, Jianghong YAO, Yongchun SHU, Zhanguo WANG. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Frontiers of Optoelectronics, 2008, 1(1): 134 Copy Citation Text show less
    References

    [1] Kang Y H, Park J, Lee U H, et al. Effect of the dot size distribution on quantum dot infrared photoresponse and temperature-dependent dark current. Applied Physics Letters, 2003, 82(7): 1099-1101

    [2] Shchekin O B, Park G, Huffaker D L, et al. Discrete energy level separation and the threshold temperature dependence of quantum dot lasers. Applied Physics Letters, 2000, 77(4): 466-468

    [3] Mukhametzhanov I, Wei Z, Heitz R, et al. Punctuated island growth: an approach to examination and control of quantum dot density, size, and shape evolution. Applied Physics Letters, 1999, 75(1): 85-87

    [4] Fan X W, Shan C X, Yang Y, et al. Growth and characterestics of ZnCdSe and ZnSeS quantum dots under S-K and V-W modes. Chinese Journal of Luminescence, 2005, 26(1): 9-14 (in Chinese)

    [5] Liu H W, Laskar I R, Huang C P, et al. Synthesis and applications of luminescent CdSe quantum dots for OLEDs. Chinese Journal of Luminescence, 2005, 26(3): 321-326

    [6] Li Y F, Han P D, Chen Z, et al. Growth and property of surface stress induced InGaN quantum dots. Chinese Journal of Semiconductors, 2003, 24(1): 39-43 (in Chinese)

    [7] Lee H, Lowe-Webb R R, Yang W, et al. Formation of InAs/GaAs quantum dots by molecular beam epitaxy: reversibility of the islanding transition. Applied Physics Letters, 1997, 71(16) 2325-2327

    [8] Schaffer W J, Lind M D, Kowalczyk S P, et al. Nucleation and strain relaxation at the InAs/GaAs(100) heterojunction. Journal of Vacuum Science and Technology B, 1983, 1(3): 688-695

    [9] Foxon C T, Joyce B A. Surface processes controlling the growth of GaxIn1-xAs and GaxIn12xP alloy films by MBE. Journal of Crystal Growth, 1978, 44(1): 75-83

    [10] Leonard D, Krishnamurthy M, Fafard S, et al. MBE Growth of quantum dots from strained coherent uniform islands of InGaAs on GaAs. Journal of Vacuum Science and Technology B, 1994, 12(2): 1063-1066

    [11] El-Emawy A A, Birudavolu S, Wong P S, et al. Formation trends in quantum dot growth using metalorganic chemical vapor deposition. Journal of Applied Physics, 2003, 93(6): 3529-3534

    [12] Dehaese O, Wallart X, Mollot F. Kinetic model of element III segregation during molecular beam epitaxy of III-III8-V semiconductor compounds. Applied Physics Letters, 1995, 66(1): 52-54

    [13] Jung S I, Yeo H Y, Yun I, et al. Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dot. Physica E, 2006, 33(1): 280-283

    [14] Ribeiro E, Maltez R L, Carvalho W, et al. Optical and structural properties of InAsP ternary self-assembled quantum dots embedded in GaAs. Applied Physics Letters, 2002, 81(16): 2953-2955

    Guozhi JIA, Jianghong YAO, Yongchun SHU, Zhanguo WANG. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Frontiers of Optoelectronics, 2008, 1(1): 134
    Download Citation