• Chinese Optics Letters
  • Vol. 21, Issue 3, 031407 (2023)
Xueying Jin1、*, Qinglin Fang1, Xin Xu1, Yu Yang2, Haoran Gao1, and Haojie Xia1
Author Affiliations
  • 1Anhui Provincial Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
  • 2School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
  • show less
    DOI: 10.3788/COL202321.031407 Cite this Article Set citation alerts
    Xueying Jin, Qinglin Fang, Xin Xu, Yu Yang, Haoran Gao, Haojie Xia. Transverse mode interaction-induced Raman laser switching dynamics in a silica rod microresonator[J]. Chinese Optics Letters, 2023, 21(3): 031407 Copy Citation Text show less
    References

    [1] X. Shen, H. Choi, D. Chen, W. Zhao, A. M. Armani. Raman laser from an optical resonator with a grafted single-molecule monolayer. Nat. Photon., 14, 95(2020).

    [2] Z. Gong, M. Li, X. Liu, Y. Xu, J. Lu, A. Bruch, J. B. Surya, C. Zou, H. X. Tang. Photonic dissipation control for Kerr soliton generation in strongly Raman-active media. Phys. Rev. Lett., 125, 183901(2020).

    [3] X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, J. Wang. Integrated continuous-wave aluminum nitride Raman laser. Optica, 4, 893(2017).

    [4] P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, M. Lončar. On-chip diamond Raman laser. Optica, 2, 924(2015).

    [5] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [6] X. Jin, Y. Yang, X. Xu, K. Wang, L. Yu, H. Xia. Broadband manipulation of Stokes Raman frequency combs via mode division multiplexing in optical microcavities. J. Light. Technol., 40, 5141(2022).

    [7] Z. Dong, Y. Song, R. Xu, Y. Zheng, J. Tian, K. Li. Broadband spectrum generation with compact Yb-doped fiber laser by intra-cavity cascaded Raman scattering. Chin. Opt. Lett., 15, 071408(2017).

    [8] R. Suzuki, A. Kubota, A. Hori, S. Fujii, T. Tanabe. Broadband gain induced Raman comb formation in a silica microresonator. J. Opt. Soc. Am. B, 35, 933(2018).

    [9] T. J. Kippenberg, S. M. Spillane, D. K. Armani, K. J. Vahala. Ultralow-threshold microcavity Raman laser on a microelectronic chip. Opt. Lett., 29, 1224(2004).

    [10] M. Ahmadi, W. Shi, S. LaRochelle. Widely tunable silicon Raman laser. Optica, 8, 804(2021).

    [11] G. Lin, Y. K. Chembo. Phase-locking transition in Raman combs generated with whispering gallery mode resonators. Opt. Lett., 41, 3718(2016).

    [12] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photonics, 9, 828(2017).

    [13] N. Deka, A. J. Maker, A. M. Armani. Titanium-enhanced Raman microcavity laser. Opt. Lett., 39, 1354(2014).

    [14] D. Xia, Y. Huang, B. Zhang, P. Zeng, J. Zhao, Z. Yang, S. Sun, L. Luo, G. Hu, D. Liu, Z. Wang, Y. Li, H. Guo, Z. Li. Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser Photonics Rev., 16, 2100443(2022).

    [15] Z. Li, Q. Du, C. Wang, J. Zou, T. Du, K. A. Richardson, Z. Cai, J. Hu, Z. Luo. Externally pumped photonic chip-based ultrafast Raman soliton source. Laser Photonics Rev., 15, 2000301(2021).

    [16] M. Yan, L. Zhang, Q. Hao, X. Shen, X. Qian, H. Chen, X. Ren, H. Zeng. Surface-enhanced dual-comb coherent Raman spectroscopy with nanoporous gold films. Laser Photonics Rev., 12, 1800096(2018).

    [17] S. Kasumie, F. Lei, J. M. Ward, X. Jiang, L. Yang, S. Nic Chormaic. Raman laser switching induced by cascaded light scattering. Laser Photonics Rev., 13, 1900138(2019).

    [18] P. Zhao, Y. Zhang, L. Wang, K. Cao, J. Su, S. Hu, H. Hu. Measurement of tropospheric CO2 and aerosol extinction profiles with Raman lidar. Chin. Opt. Lett., 6, 157(2008).

    [19] K. Yang, H. Li, H. Gong, X. Shen, Q. Hao, M. Yan, K. Huang, H. Zeng. Temperature measurement based on adaptive dual-comb absorption spectral detection. Chin. Opt. Lett., 18, 051401(2020).

    [20] H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, M. Paniccia. A cascaded silicon Raman laser. Nat. Photon., 2, 170(2008).

    [21] B.-S. Moon, T. K. Lee, W. C. Jeon, S. K. Kwak, Y.-J. Kim, D.-H. Kim. Continuous-wave upconversion lasing with a sub-10 W cm−2 threshold enabled by atomic disorder in the host matrix. Nat. Commun., 12, 4437(2021).

    [22] Y. Chen, Z.-H. Zhou, C.-L. Zou, Z. Shen, G.-C. Guo, C.-H. Dong. Tunable Raman laser in a hollow bottle-like microresonator. Opt. Express, 25, 16879(2017).

    [23] T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, K. J. Vahala. Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and micro-parametric oscillators. Opt. Express, 13, 3558(2005).

    [24] R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus. Raman response function of silica-core fibers. J. Opt. Soc. Am. B, 6, 1159(1989).

    [25] P. Del’Haye, S. A. Diddams, S. B. Papp. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Appl. Phys. Lett., 102, 221119(2013).

    [26] G. Lin, Y. Candela, O. Tillement, Z. Cai, V. Lefèvre-Seguin, J. Hare. Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers. Opt. Lett., 37, 5193(2012).

    [27] O. Lux, S. Sarang, O. Kitzler, D. J. Spence, R. P. Mildren. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain. Optica, 3, 876(2016).

    [28] H. Jang, B. S. Kim, B. S. Chun, H. J. Kang, Y. S. Jang, Y. W. Kim, Y. J. Kim, S. W. Kim. Comb-rooted multi-channel synthesis of ultra-narrow optical frequencies of few Hz linewidth. Sci. Rep., 9, 7652(2019).

    [29] G. Lin, Y. K. Chembo. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express, 23, 1594(2015).

    [30] A. V. Andrianov, E. A. Anashkina. Single-mode silica microsphere Raman laser tunable in the U-band and beyond. Results Phys., 17, 103084(2020).

    [31] I. S. Grudinin, L. Maleki. Efficient Raman laser based on a CaF2 resonator. J. Opt. Soc. Am. B, 25, 594(2008).

    [32] P.-J. Zhang, Q.-X. Ji, Q.-T. Cao, H. Wang, W. Liu, Q. Gong, Y.-F. Xiao. Single-mode characteristic of a supermode microcavity Raman laser. Proc. Natl. Acad. Sci. U.S.A., 118, e2101605118(2021).

    [33] B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, Y.-F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. U.S.A., 111, 14657(2014).

    [34] Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. U.S.A., 111, E3836(2014).

    Xueying Jin, Qinglin Fang, Xin Xu, Yu Yang, Haoran Gao, Haojie Xia. Transverse mode interaction-induced Raman laser switching dynamics in a silica rod microresonator[J]. Chinese Optics Letters, 2023, 21(3): 031407
    Download Citation