[2] DOLGIN E. The myopia boom[J]. Nature, 2015, 519(7543): 276-278.
[3] MENG W, BUTTERWORTH J, MALECAZE F, et al. Axial length of myopia: a review of current research[J]. Ophthalmologica, 2011, 225(3): 127-134.
[4] SAW S M, CHUA W H, GAZZARD G, et al. Eye growth changes in myopic children in Singapore[J]. British Journal of Ophthalmology, 2005, 89(11): 1489 – 1494.
[5] LLORENTE L, BARBERO S, CANO D, et al. Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations[J]. Journal of Vision, 2004, 4(4): 288-298.
[7] ZHAO L, CHEN X J, ZHU J, et al. Lanosterol reverses protein aggregation in cataracts[J]. Nature, 2015, 523(7562): 607-611.
[8] NGO C, SINGH M, SNG C, et al. Visual acuity outcomes with SA60D3, SN60D3, and ZM900 multifocal IOL implantation after phacoemulsification[J]. Journal of Refractive Surgery, 2010, 26(3): 177-182.
[9] JENDRITZA B B, KNORZ M C, MORTON S. Wavefront-guided excimer laser vision correction after multifocal IOL implantation[J]. Journal of Refractive Surgery, 2008, 24(3): 274-279.
[10] ALBERDI T, MACíAS-MURELAGA B, BASCARáN L, et al. Rotational stability and visual quality in eyes with Rayner toric intraocular lens implantation[J]. Journal of Refractive Surgery, 2012, 28(10): 696-700.
[11] TRIVEDI R H, WILSON M E. Prediction error after pediatric cataract surgery with intraocular lens implantation: contact versus immersion a-scan biometry[J]. Journal of Cataract & Refractive Surgery, 2011, 37(3): 501-505.
[12] SCHMID G F. Axial and peripheral eye length measured with optical low coherence reflectometry[J]. Journal of Biomedical Optics, 2003, 8(4): 655-662.
[15] HOLZER M P, MAMUSA M, AUFFARTH G U. Accuracy of a new partial coherence interferometry analyser for biometric measurements[J]. British Journal of Ophthalmology, 2009, 93(6): 807-810.
[17] GOEBELS S C, SEITZ B, LANGENBUCHER A. Comparison of the new biometer OA-1000 with IOLMaster and Tomey AL-3000[J]. Current Eye Research, 2013, 38(9): 910-916.
[18] TAKEI K, SEKINE Y, OKAMOTO F, et al. Measurement of axial length of eyes with incomplete filling of silicone oil in the vitreous cavity using x ray computed tomography[J]. British Journal of Ophthalmology, 2002, 86(1): 47-50.
[22] FERCHER A F, ROTH E. Ophthalmic laser interferometry[J]. Proceedings of SPIE, 1986, 658: 48-51.
[25] KASCHKE M, DONNERHACKE K H, RILL M S. Optical devices in ophthalmology and optometry: technology, design principles, and clinical applications[M]. Weinheim: Wiley, 2014: 277-344.
[26] TETIKOGLU M, SAGDIK H M, AKTAS S, et al. Repeatability and reproducibility of a new partial coherence interferometer; AL-scan optic biometer[J]. Medicine Science, 2016, 5(1): 222-232.
[27] MOON S W, LIM S H, LEE H Y. Accuracy of biometry for intraocular lens implantation using the new partial coherence interferometer, AL-scan[J]. Korean Journal of Ophthalmology, 2014, 28(6): 444-450.
[33] MANDAL P, BERROW E J, NAROO S A, et al. Validity and repeatability of the Aladdin ocular biometer[J]. British Journal of Ophthalmology, 2014, 98(2): 256-258.
[34] GOLDBLUM D. Physics lesson: differences in PCI and OLCR optical biometry[J]. Cataract & Refractive Surgery Today, 2015: 41-43.
[36] ZHONG J G, SHAO Y L, TAO A Z, et al. Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography[J]. American Journal of Ophthalmology, 2014, 157(2): 412-420.
[37] DAI C X, ZHOU C Q, FAN S H, et al. Optical coherence tomography for whole eye segment imaging[J]. Optics Express, 2012, 20(6): 6109-6115.
[38] FAN S H, LI L, LI Q, et al. Dual band dual focus optical coherence tomography for imaging the whole eye segment[J]. Biomedical Optics Express, 2015, 6(7): 2481-2493.
[39] GRULKOWSKI I, LIU J J, POTSAID B, et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers[J]. Biomedical Optics Express, 2012, 3(11): 2733-2751.
[40] GRULKOWSKI I, LIU J J, ZHANG J Y, et al. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers[J]. Ophthalmology, 2013, 120(11): 2184-2190.
[41] KUNERT K S, PETER M, BLUM M, et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry[J]. Journal of Cataract & Refractive Surgery, 2016, 42(1): 76-83.
[42] RUIZ-MESA R, ABENGóZAR-VELA A, RUIZ-SANTOS M. Comparison of a new Scheimpflug imaging combined with partial coherence interferometry biometer and a low-coherence reflectometry biometer[J]. Journal of Cataract & Refractive Surgery, 2017, 43(11): 1406-1412.
[43] KURIAN M, NEGALUR N, DAS S, et al. Biometry with a new swept-source optical coherence tomography biometer: repeatability and agreement with an optical low-coherence reflectometry device[J]. Journal of Cataract & Refractive Surgery, 2016, 42(4): 577-581.
[44] AKMAN A, ASENA L, GüNG.R S G. Evaluation and comparison of the new swept source OCT-based IOL master 700 with the IOL master 500[J]. British Journal of Ophthalmology, 2016, 100(9): 1201-1205.