• Semiconductor Optoelectronics
  • Vol. 43, Issue 1, 61 (2022)
QIAN Na, ZHOU Defu, QIN Ruiheng, HUA Shiyu..., DENG Anyi and ZOU Weiwen*|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2022012801 Cite this Article
    QIAN Na, ZHOU Defu, QIN Ruiheng, HUA Shiyu, DENG Anyi, ZOU Weiwen. Progresses in High-speed Photonic Analog-to-Digital Converter and Its Integration[J]. Semiconductor Optoelectronics, 2022, 43(1): 61 Copy Citation Text show less
    References

    [1] Schneider T, Berekovic M. High-Bandwidth, Analogue-to-Digital Conversion for THz Communication Systems[M]. THz Communications. Springer, Cham, 2022: 331-340.

    [2] Jonsson B E. A/D-converter performance evolution[R]. Converter Passion, 2012.

    [3] Taylor H. An optical analog-to-digital converter-design and analysis[J]. IEEE J. of Quantum Electron., 1979, 15(4): 210-216.

    [4] Valley G C, Hurrell J P, Sefler G A. Photonic analog-to-digital converters: fundamental and practical limits[J]. International Society for Optics and Photonics, 2004, 5618: 96-106.

    [5] Bell J A, Hamilton M C, Leep D A, et al. Extension of electronic A/D converters to multi-gigahertz sampling rates using optical sampling and demultiplexing techniques[C]// Twenty-Third Asilomar Conf. on Signals, Systems and Computers, 1989: 289-290.

    [6] Fok M P, Lee K L, Shu C. 4/spl times/2.5GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion[J]. IEEE Photon. Technol. Lett., 2004, 16(3): 876-878.

    [7] Kim J, Park M J, Perrott M H, et al. Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution[J]. Opt. Express, 2008, 16(21): 16509-16515.

    [8] Khilo A, Spector S J, Grein M E, et al. Photonic ADC: overcoming the bottleneck of electronic jitter[J]. Opt. Express, 2012, 20(4): 4454-4469.

    [9] Misra A, Kress C, Singh K, et al. Integrated source-free all optical sampling with a sampling rate of up to three times the RF bandwidth of silicon photonic MZM[J]. Opt. Express, 2019, 27(21): 29972-29984.

    [10] Jalali B, Xie Y M. Optical folding-flash analog-to-digital converter with analog encoding[J]. Opt. Lett., 1995, 20(18): 1901-1903.

    [11] Jarrahi M, Pease R F W, Lee T H. Spatial quantized analog-to-digital conversion based on optical beam-steering[J]. J. of Lightwave Technol., 2008, 26(14): 2219-2226.

    [12] Xu C, Liu X. Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters[J]. Opt. Lett., 2003, 28(12): 986-988.

    [13] Valley G C. Photonic analog-to-digital converters[J]. Opt. Express, 2007, 15(5): 1955-1982.

    [14] Jalali B, Bhushan A S, Coppinger F. Photonic time-stretch: A potential solution for ultrafast A/D conversion[C]// IEEE Inter. Topical Meeting on Microwave Photonics. Technical Digest (Including High Speed Photonics Components Workshop), 1998: 197-198.

    [15] Bhushan A S, Coppinger F, Jalali B, et al. 150Gsample/s wavelength division sampler with time-stretched output[J]. Electron. Lett., 1998, 34(5): 474-475.

    [16] Bhushan A S, Kelkar P V, Jalali B, et al. 130-GSa/s photonic analog-to-digital converter with time stretch preprocessor[J]. IEEE Photon. Technol. Lett., 2002, 14(5): 684-686.

    [17] Chou J, Boyraz O, Solli D, et al. Femtosecond real-time single-shot digitizer[J]. Appl. Phys. Lett., 2007, 91(16): 161105.

    [18] Han Y, Jalali B. Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating[J]. IEEE Trans. on Circuits and Systems Ⅰ: Regular Papers, 2005, 52(8): 1502-1507.

    [19] Yariv A, Koumans R. Time interleaved optical sampling for ultra-high speed A/D conversion[J]. Electron. Lett., 1998, 34(21): 2012-2013.

    [20] Kang J U, Esman R D. Demonstration of time interleaved photonic four-channel WDM sampler for hybrid analogue-digital converter[J]. Electron. Lett., 1999, 35(1): 60-61.

    [21] Lee K L, Shu C, Liu H F. 10Gsample/s photonic analog-to-digital converter constructed using 10-wavelength jitter-suppressed sampling pulses from a self-seeded laser diode[C]// IEEE Conf. on Lasers and Electro-Optics, 2001: 67-68.

    [22] Fu X, Zhang H, Peng Y, et al. 40-Gbps time-and wavelength-interleaved pulse-train generation in wavelength-demultiplexing analog-to-digital conversion[J]. Optical Engin., 2009, 48(10): 104302.

    [23] Pierno L, Fiorello A M, Bogoni A, et al. Optical switching matrix as time domain demultiplexer in photonic ADC[C]// 2013 European Microwave Integrated Circuit Conf. IEEE, 2013: 41-44.

    [24] Scotti F, Laghezza F, Pinna S, et al. High precision photonic ADC with four time-domain-demultiplexed interleaved channels[C]// Optoelectronics and Communications Conf. Hold Jointly with International Conf. on Photonics in Switching, IEEE, 2013: TuO1_3.

    [25] Clark T R, Kang J U, Esman R D. Performance of a time-and wavelength-interleaved photonic sampler for analog-digital conversion[J]. IEEE Photon. Technol. Lett., 1999, 11(9): 1168-1170.

    [26] Clark T R, Matthews P J, Currie M. Real-time photonic analog-digital converter based on discrete wavelength-time mapping[C]// IEEE Inter. Topical Meeting on Microwave Photonics, 1999: 231-234.

    [27] Gevorgyan H, Khilo A. Simplified architecture for photonic analog-to-digital conversion, utilizing an array of optical modulators[C]// Silicon Photonics Ⅺ. Inter. Society for Optics and Photonics, 2016, 9752: 97520I.

    [28] Zhang T, Su J, Fan Z, et al. Experimental demonstration of a real-time hybrid optoelectronic analog-to-digital converter[J]. Optical Engin., 2020, 57(5): 057105.

    [29] Juodawlkis P W, Twichell J C, Betts G E, et al. Optically sampled analog-to-digital converters[J]. IEEE Trans. on Microwave Theory and Techniques, 2001, 47(10): 1840-1853.

    [30] Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345.

    [31] Yang G, Zou W, Yu L, et al. Influence of the sampling clock pulse shape mismatch on channel-interleaved photonic analog-to-digital conversion[J]. Opt. Lett., 2018, 43(15): 3530-3533.

    [32] Ng W W, Luh L, Persechini D L, et al. Ultrahigh-speed photonic analog-to-digital conversion technologies[C]// Enabling Photonic Technologies for Aerospace Applications Ⅵ. Inter. Society for Optics and Photonics, 2004, 5435: 171-177.

    [33] Yang G, Zou W, Yu L, et al. Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter[J]. Opt. Express, 2016, 24(21): 24061-24074.

    [34] Qian N, Zhang L, Chen J, et al. Characterization of the frequency response of channel-interleaved photonic ADCs based on the optical time-division demultiplexer[J]. IEEE Photonics J., 2021, 13(5): 1-9.

    [35] Yu L, Zou W, Yang G, et al. Switching response of dual-output Mach-Zehnder modulator in channel-interleaved photonic analog-to-digital converter[J]. Chinese Optics Lett., 2018, 16(12): 120602.

    [36] Qian N, Yu L, Chen J, et al. Influence of the demultiplexer on channel-interleaved photonic analog-to-digital converters[J]. IEEE Photonics J., 2020, 12(5): 1-10.

    [37] Zheng K, Zou W, Yu L, et al. Stability optimization of channel-interleaved photonic analog-to-digital converter by extracting of dual-output photonic demultiplexing[J]. Chinese Optics Lett., 2020, 18(1): 012502.

    [38] Kurosawa N, Kobayashi H, Maruyama K, et al. Explicit analysis of channel mismatch effects in time-interleaved ADC systems[J]. IEEE Trans. on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2001, 48(3): 261-271.

    [39] Yang G, Zou W, Yuan Y, et al. Wideband signal detection based on high-speed photonic analog-to-digital converter[J]. Chinese Optics Lett., 2018, 16(3): 030601.

    [40] Yang G, Zou W, Chen J. High-resolution characterization of parametric sampling based photonic phase locking[C]// IEEE 2017 Inter. Topical Meeting on Microwave Photonics (MWP), 2017: 1-4.

    [41] Yang G, Zou W, Yu L, et al. Investigation of electronic aperture jitter effect in channel-interleaved photonic analog-to-digital converter[J]. Opt. Express, 2019, 27(6): 9205-9214.

    [42] Zou W, Zhang H, Long X, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6(1): 1-8.

    [43] Qian N, Zou W, Zhang S, et al. Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation[J]. Opt. Lett., 2018, 43(23): 5869-5872.

    [44] Xu S, Zou X, Ma B, et al. Deep-learning-powered photonic analog-to-digital conversion[J]. Light: Science & Applications, 2019, 8(1): 1-11.

    [45] Zou X, Xu S, Deng A, et al. Photonic analog-to-digital converter powered by a generalized and robust convolutional recurrent autoencoder[J]. Opt. Express, 2020, 28(26): 39618-39628.

    [46] Zou X, Xu S, Zou W. Visualizing and simplifying convolutional recurrent autoencoder for mismatch compensation of channel-interleaved photonic analog-to-digital converter[J]. Opt. Lett., 2021, 46(13): 3167-3170.

    [48] Mehta N, Su Z, Timurdogan E, et al. An optically sampled ADC in 3D integrated silicon-photonics/65nm CMOS[C]// 2020 IEEE Symp. on VLSI Technol., 2020: 1-2.

    [49] Mercante A J, Yao P, Shi S, et al. 110GHz CMOS compatible thin film LiNbO3 modulator on silicon[J]. Opt. Express, 2016, 24(14): 15590-15595.

    [50] Burla M, Hoessbacher C, Heni W, et al. 500GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics[J]. APL Photonics, 2019, 4(5): 56106.

    [51] Hong S, Zhang L, Wang Y, et al. Ultralow-loss compact silicon photonic waveguide spirals and delay lines[J]. Photonics Research, 2022, 10(1): 1-7.

    [52] Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556(7701): 349-354.

    [53] Fandio J S, Muoz P, Doménech D, et al. A monolithic integrated photonic microwave filter[J]. Nature Photonics, 2017, 11(2): 124-129.

    [54] Lindenmann N, Balthasar G, Hillerkuss D, et al. Photonic wire bonding: a novel concept for chip-scale interconnects[J]. Opt. Express, 2012, 20(16): 17667-17677.

    [55] Weigel P O, Savanier M, DeRose C T, et al. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics[J]. Scientific Reports, 2016, 6(1): 1-9.

    [56] Behroozpour B, Sandborn P A M, Quack N, et al. 11.8 chip-scale electro-optical 3D FMCW lidar with 8μm ranging precision[C]//2016 IEEE Inter. Solid-State Circuits Conf. (ISSCC), 2016: 214-216.

    QIAN Na, ZHOU Defu, QIN Ruiheng, HUA Shiyu, DENG Anyi, ZOU Weiwen. Progresses in High-speed Photonic Analog-to-Digital Converter and Its Integration[J]. Semiconductor Optoelectronics, 2022, 43(1): 61
    Download Citation