• Chinese Journal of Lasers
  • Vol. 49, Issue 16, 1602003 (2022)
Xiankai Meng1、2、*, Yaomin Zhao2, Jianzhong Zhou2, Shu Huang2, Xumin Leng2, and Li Li2
Author Affiliations
  • 1Institute of Advanced Manufacturing and Modern Equipment Technology Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • 2School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • show less
    DOI: 10.3788/CJL202249.1602003 Cite this Article Set citation alerts
    Xiankai Meng, Yaomin Zhao, Jianzhong Zhou, Shu Huang, Xumin Leng, Li Li. Surface Properties of 2024 Aluminum Alloy Strengthened by Laser Ultrasonic Composite Shock Peening[J]. Chinese Journal of Lasers, 2022, 49(16): 1602003 Copy Citation Text show less
    References

    [1] Sheng J, Huang S, Zhou J Z et al. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy[J]. Optics & Laser Technology, 77, 169-176(2016).

    [2] Li Y, Li D S, Li X Q. A review of plastic forming technologies and applications for large and complex-shaped panels[J]. Aeronautical Manufacturing Technology, 63(2020).

    [3] Li C L, Suo D J. PW 1000G engine takes the lead in using aluminum alloy fan blades[J]. Aeroengine, 40, 12(2014).

    [4] Wang D Y[D]. Alternate double-side laser peening of thin sections: experiments & modelling(2017).

    [5] Meng X K, Zhou J Z. Vibration modal and fatigue improvement mechanism of aviation light alloy treated by warm laser peening[J]. Journal of Mechanical Engineering, 55, 165(2019).

    [6] Cai J, Liu D X, Ye Z Y et al. Influence of cyclic action of corrosion and alternate load on fatigue life of 2A12-T4 aluminum alloy[J]. Journal of Chinese Society for Corrosion and Protection, 35, 61-68(2015).

    [7] Zhang Q[D]. Fatigue failure analysis and life prediction of pre-corroded aerospace aluminum alloys(2018).

    [8] Sun Y J, Zhou J Z, Huang S et al. Research on biological corrosion resistance of medical Ti6Al4V alloy subjected to laser peening[J]. Chinese Journal of Lasers, 44, 0702003(2017).

    [9] Salimianrizi A, Foroozmehr E, Badrossamay M et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6[J]. Optics and Lasers in Engineering, 77, 112-117(2016).

    [10] Pant B K, Pavan A H V, Prakash R V et al. Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V[J]. International Journal of Fatigue, 93, 38-50(2016).

    [11] Wang Q, Gao G Q, Luo X K. Effect of laser shot peening and shot peeing compound strengthening process on fatigue life of 2124-T851 aluminum alloy[J]. Surface Technology, 50, 96-102(2021).

    [12] Straumal B, Martynenko N, Temralieva D et al. The effect of equal-channel angular pressing on microstructure, mechanical properties, and biodegradation behavior of magnesium alloyed with silver and gadolinium[J]. Crystals, 10, 918(2020).

    [13] Liao Y, Yan H G, Xia W J et al. Effect of heat treatment on the microstructure and properties of high strain rate rolled 7050 aluminum alloy[J]. Metals and Materials International, 1-12(2021).

    [14] Yella P, Rajulapati K V, Prasad G V et al. Effect of laser shock peening on high cycle fatigue characteristics of 316LN stainless steel[J]. International Journal of Pressure Vessels and Piping, 176, 103972(2019).

    [15] Meng X K, Zhou J Z, Su C et al. Residual stress relaxation and its effects on the fatigue properties of Ti6Al4V alloy strengthened by warm laser peening[J]. Materials Science and Engineering: A, 680, 297-304(2017).

    [16] Xiang J Y, Ge M Z, Wang T M. Effect of laser shock peening on high-temperature tensile property of GH3039 superalloy[J]. Laser & Optoelectronics Progress, 59, 0716002(2022).

    [17] Zhou W, Ge M Z, Wang T M et al. Effect of laser shock peening on surface integrity of GH3039 superalloys[J]. Laser & Optoelectronics Progress, 58, 0314001(2021).

    [18] Tian X L, Zhou J Z, Li J et al. Effect of cryogenic laser peening on microstructure of 2024-T351 aluminum alloy[J]. Chinese Journal of Lasers, 46, 0902004(2019).

    [19] Lu J Z, Ji S J, Wu L J et al. Effect of laser shock peening and ultrasound surface rolling combined processes on mechanical properties of AZ91D Mg alloy[J]. Journal of Jilin University (Engineering and Technology Edition), 50, 1301-1309(2020).

    [20] Wang J B[D]. Research on friction and wear properties of AISI304 stainless steel strengthened by laser shock peening and ultrasonic impact peening(2020).

    [21] Zhou Y, Zheng Y Y, Wang Y N. Research on surface hardness of S30408 by ultrasonic impact treatment[J]. Chemical Equipment Technology, 42, 17-22(2021).

    [22] Nový F, Petrů M, Trško L et al. Fatigue properties of welded Strenx 700 MC HSLA steel after ultrasonic impact treatment application[J]. Materials Today: Proceedings, 32, 174-178(2020).

    [23] Liu Y P, Shi Z J, Zhao Y Z et al. Cut-off value of detail fatigue rated strength of TC4 titanium alloy with compound strengthening treatment by laser shock peening and shot peening[J]. Chinese Journal of Lasers, 47, 0502006(2020).

    [24] Zhou J Z, Han Y H, Huang S et al. Effect of different process temperatures on residual stress and nano-hardness of warm laser peened INl718 superalloy[J]. Chinese Journal of Lasers, 42, 0703001(2015).

    [25] Li J[D]. Research on strengthening mechanism of cryogenic laser peening and vibration fatigue properties of TC6 titanium alloy(2020).

    [26] Meng X K[D]. Vibration modal and fatigue improvement mechanism of aerial light alloy treated by warm laser peening(2017).

    Xiankai Meng, Yaomin Zhao, Jianzhong Zhou, Shu Huang, Xumin Leng, Li Li. Surface Properties of 2024 Aluminum Alloy Strengthened by Laser Ultrasonic Composite Shock Peening[J]. Chinese Journal of Lasers, 2022, 49(16): 1602003
    Download Citation