• Nano-Micro Letters
  • Vol. 16, Issue 1, 181 (2024)
Zheng Zhang1, Jingren Gou1, Kaixuan Cui1, Xin Zhang1..., Yujian Yao1, Suqing Wang2,* and Haihui Wang1,**|Show fewer author(s)
Author Affiliations
  • 1Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
  • 2School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510000, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01389-2 Cite this Article
    Zheng Zhang, Jingren Gou, Kaixuan Cui, Xin Zhang, Yujian Yao, Suqing Wang, Haihui Wang. 12.6 μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 181 Copy Citation Text show less
    References

    [1] S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, e2110423 (2023).

    [2] J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 15, 2753–2775 (2022).

    [3] H. Zhang, L. Huang, H. Xu, X. Zhang, Z. Chen et al., A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2, 201–208 (2022).

    [4] Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020).

    [5] L. Nie, S. Chen, C. Zhang, L. Dong, Y. He et al., Integration of a low-tortuous electrode and an in-situ-polymerized electrolyte for all-solid-state lithium-metal batteries. Cell Rep. Phys. Sci. 3, 100851 (2022).

    [6] H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023).

    [7] S. Wang, Q. Sun, Q. Zhang, C. Li, C. Xu et al., Li-ion transfer mechanism of ambient-temperature solid polymer electrolyte toward lithium metal battery. Adv. Energy Mater. 13, 2204036 (2023).

    [8] X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15, 74 (2023).

    [9] B. Jiang, Y. Wei, J. Wu, H. Cheng, L. Yuan et al., Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem 3, 100058 (2021).

    [10] M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13, 2203640 (2023).

    [11] J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021).

    [12] X. Yang, K.R. Adair, X. Gao, X. Sun, Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 14, 643–671 (2021).

    [13] J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    [14] J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li et al., Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019).

    [15] Q. Liang, L. Chen, J. Tang, X. Liu, J. Liu et al., Large-scale preparation of ultrathin composite polymer electrolytes with excellent mechanical properties and high thermal stability for solid-state lithium-metal batteries. Energy Storage Mater. 55, 847–856 (2023).

    [16] Y. Ma, J. Wan, Y. Yang, Y. Ye, X. Xiao et al., Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 12, 2103720 (2022).

    [17] C. Bao, C. Zheng, M. Wu, Y. Zhang, J. Jin et al., 12µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204028 (2023).

    [18] L. Chen, X. Qiu, Z. Bai, L.-Z. Fan, Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J. Energy Chem. 52, 210–217 (2021).

    [19] L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2022).

    [20] X.-L. Zhang, F.-Y. Shen, X. Long, S. Zheng, Z. Ruan et al., Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Storage Mater. 52, 201–209 (2022).

    [21] S. Liu, X. Shen, L. Wei, R. Wang, B. Ding et al., Molecular coordination induced high ionic conductivity of composite electrolytes and stable LiF/Li3N interface in long-term cycling all-solid-state lithium metal batteries. Energy Storage Mater. 59, 102773 (2023).

    [22] W. Fan, Y. Huang, M. Yu, K. She, J. Gou et al., Designing metal-organic framework fiber network reinforced polymer electrolytes to provide continuous ion transport in solid state lithium metal batteries. Nano Res. (2023).

    [23] Z. Wang, J. Ma, P. Cui, X. Yao, High-rate solid polymer electrolyte based flexible all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 14, 34649–34655 (2022).

    [24] Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33, e2100353 (2021).

    [25] C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous MOF based dendrites inhibition hybrid solid-state electrolytes. Small 19, e2300066 (2023).

    [26] Q. Hu, Z. Sun, L. Nie, S. Chen, J. Yu et al., High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries. Mater. Today Energy 27, 101052 (2022).

    [27] J. Sun, C. He, X. Yao, A. Song, Y. Li et al., Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries. Adv. Funct. Mater. 31, 2006381 (2021).

    [28] G. Wang, Y. Liang, H. Liu, C. Wang, D. Li et al., Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip. Mater. 1, 434–444 (2022).

    [29] B. Yuan, B. Zhao, Q. Wang, Y. Bai, Z. Cheng et al., A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries. Energy Storage Mater. 47, 288–296 (2022).

    [30] J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020).

    [31] K. Liu, M. Wu, H. Jiang, Y. Lin, T. Zhao, An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries. J. Mater. Chem. A 8, 18802–18809 (2020).

    [32] N. Peng, W. Kou, W. Wu, S. Guo, Y. Wang et al., Laminar composite solid electrolyte with poly(ethylene oxide)-threaded metal-organic framework nanosheets for high-performance all-solid-state lithium battery. Energy Environ. Mater. 6, 12280 (2023).

    [33] G. Wang, P. He, L.-Z. Fan, Asymmetric polymer electrolyte constructed by metal–organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 31, 2007198 (2021).

    [34] Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022).

    [35] Z. Zhang, Y. Huang, G. Zhang, L. Chao, Three–dimensional fiber network reinforced polymer electrolyte for dendrite–free all–solid–state lithium metal batteries. Energy Storage Mater. 41, 631–641 (2021).

    [36] J. Kang, Z. Yan, L. Gao, Y. Zhang, W. Liu et al., Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers. Energy Storage Mater. 53, 192–203 (2022).

    [37] C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui et al., Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6, 1901036 (2019).

    [38] R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia et al., Metal–organic frameworks for solid-state electrolytes. Energy Environ. Sci. 13, 2386–2403 (2020).

    [39] X. Zhang, Q. Su, G. Du, B. Xu, S. Wang et al., Stabilizing solid-state lithium metal batteries through in situ generated janus-heterarchical LiF-rich SEI in ionic liquid confined 3D MOF/polymer membranes. Angew. Chem. Int. Ed. 62, e202304947 (2023).

    [40] J. Sun, X. Yao, Y. Li, Q. Zhang, C. Hou et al., Composite solid electrolytes: facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 10, 2070131 (2020).

    [41] M.S. Kim, Z. Zhang, J. Wang, S.T. Oyakhire, S.C. Kim et al., Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 17, 3168–3180 (2023).

    [42] T. Hu, J. Tian, F. Dai, X. Wang, R. Wen et al., Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases. J. Am. Chem. Soc. 145, 1327–1333 (2023).

    [43] M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022).

    [44] L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi et al., Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power. Sources 300, 376–385 (2015).

    [45] J. Gou, W. Liu, A. Tang, L. Wu, Interfacially stable and high-safety lithium batteries enabled by porosity engineering toward cellulose separators. J. Membr. Sci. 659, 120807 (2022).

    [46] H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge et al., Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019).

    [47] K. Zhang, F. Wu, X. Wang, S. Weng, X. Yang et al., 8.5µm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv. Energy Mater. 12, 2270100 (2022).

    [48] Y. Lin, M. Wu, J. Sun, L. Zhang, Q. Jian et al., A high-capacity, long-cycling all-solid-state lithium battery enabled by integrated cathode/ultrathin solid electrolyte. Adv. Energy Mater. 11, 2101612 (2021).

    [49] L. Han, Y. Liu, C. Liao, Y. Zhao, Y. Cao et al., Noncombustible 7µm-thick solid polymer electrolyte for highly energy density solid state lithium batteries. Nano Energy 112, 108448 (2023).

    [50] Y. Ma, C. Wang, K. Yang, B. Li, Y. Li et al., Ultrathin and robust composite electrolyte for stable solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 15, 17978–17985 (2023).

    [51] J. Gou, Z. Zhang, S. Wang, J. Huang, K. Cui et al., An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries. Adv. Mater. 36, e2309677 (2024).

    [52] Z. Zhang, J. Wang, H. Ying, S. Zhang, P. Huang et al., The role of active passivated interface in poly (ethylene oxide) electrolyte for 4.2V solid-state lithium metal batteries. Chem. Eng. J. 451, 138680 (2023).

    [53] P. Pan, M. Zhang, Z. Cheng, L. Jiang, J. Mao et al., Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable All-Solid-State lithium metal batteries. Energy Storage Mater. 47, 279–287 (2022).

    [54] Q. Yang, G. Li, D. Shi, L. Gao, N. Deng et al., Composite solid electrolyte with continuous and fast organic-inorganic ion transport highways created by 3D crimped nanofibers@functional ceramic nanowires. Small 19, e2301521 (2023).

    [55] J. Xu, J. Li, Y. Li, M. Yang, L. Chen et al., Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3PS4 in the SEI layer. Adv. Mater. 34, e2203281 (2022).

    [56] X. Zhang, C. Fu, S. Cheng, C. Zhang, L. Zhang et al., Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Mater. 56, 121–131 (2023).

    [57] Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30, 1704436 (2018).

    [58] S. Mo, H. An, Q. Liu, J. Zhu, C. Fu et al., Multistage bridge engineering for electrolyte and interface enables quasi-solid batteries to operate at -40 °C. Energy Storage Mater. 65, 103179 (2024).

    [59] F. Fu, Y. Liu, C. Sun, L. Cong, Y. Liu et al., Unveiling and alleviating chemical “crosstalk” of succinonitrile molecules in hierarchical electrolyte for high-voltage solid-state lithium metal batteries. Energy Environ. Mater. 6, 12367 (2023).

    Zheng Zhang, Jingren Gou, Kaixuan Cui, Xin Zhang, Yujian Yao, Suqing Wang, Haihui Wang. 12.6 μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 181
    Download Citation