• Frontiers of Optoelectronics
  • Vol. 3, Issue 3, 228 (2010)
Li LIU1、2, Mingwang SHAO1、3、*, and Xiuhua WANG1
Author Affiliations
  • 1Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
  • 2College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
  • 3Functional Nano and Soft Materials Laboratory, Soochow University, Suzhou 215123, China
  • show less
    DOI: 10.1007/s12200-010-0113-x Cite this Article
    Li LIU, Mingwang SHAO, Xiuhua WANG. Bis-(8-hydroxyquinoline) mercury nanoribbons: preparation, characterization and photoconductivity[J]. Frontiers of Optoelectronics, 2010, 3(3): 228 Copy Citation Text show less
    References

    [1] Chiu J J,WangWS, Kei C C, Perng T P. Tris-(8-hydroxyquinoline) aluminum nanoparticles prepared by vapor condensation. Applied Physics Letters, 2003, 83(2): 347-349

    [2] Hu J S, Ji H X, Cao A M, Huang Z X, Zhang Y, Wan L J, Xia A D, Yu D P, Meng X M, Lee S T. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties. Chemical Communications (Cambridge), 2007, (29): 3083-3085

    [3] Chiu J J, Kei C C, Perng T P, Wang W S. Organic semiconductor nanowires for field emission. Advanced Materials, 2003, 15(16): 1361-1364

    [4] Liu H B, Zhao Q, Li Y L, Liu Y, Lu F S, Zhuang J P,Wang S, Jiang L, Zhu D B, Yu D P, Chi L F. Field emission properties of large-area nanowires of organic charge-transfer complexes. Journal of the American Chemical Society, 2005, 127(4): 1120-1121

    [5] Kastler M, Pisula W, Laquai F, Kumar A, Davies R J, Baluschev S, Garcia-Gutierrez M C, Wasserfallen D, Butt H J, Riekel C, Wegner G, Mullen K. Organization of charge-carrier pathways for organic electronics. Advanced Materials, 2006, 18(17): 2255-2259

    [6] Cho C P, Yu C Y, Perng T P. Growth of AlQ3 nanowires directly from amorphous thin film and nanoparticles. Nanotechnology, 2006, 17(21): 5506-5510

    [7] Xia Y N, Yang P D, Sun Y G,Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan Y Q. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15(5): 353-389

    [8] Zhang X J, Jie J S, ZhangWF, Zhang C Y, Luo L B, He Z B, Zhang X H, Zhang W J, Lee C S, Lee S T. Photoconductivity of a single small-molecule organic nanowire. Advanced Materials, 2008, 20(12): 2427-2432

    [9] Hu J S, Guo Y G, Liang H P, Wan L J, Jiang L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. Journal of the American Chemical Society, 2005, 127(48): 17090-17095

    [10] Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Lowdimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Advanced Materials, 2008, 20(15): 2859-2876

    [11] Zhang X J, Zhang X H, Zou K, Lee C S, Lee S T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular chargetransfer organic molecules. Journal of the American Chemical Society, 2007, 129(12): 3527-3532

    [12] An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. Journal of the American Chemical Society, 2004, 126(33): 10232-10233

    [13] Zhao L Y, Yang W S, Luo Y, Zhai T Y, Zhang G J, Yao J N. Nanotubes from isomeric dibenzoylmethane molecules. Chemistry—A European Journal, 2005, 11(12): 3773-3778

    [14] Zhao Y S, Xiao D B, Yang W S, Peng A D, Yao J N. 2,4,5-triphenylimidazole nanowires with fluorescence narrowing spectra prepared through the adsorbent-assisted physical vapor deposition method. Chemistry of Materials, 2006, 18(9): 2302-2306

    [15] Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915

    [16] Mitchell K, Ibers J A. Rare-earth transition-metal chalcogenides. Chemical Reviews, 2002, 102(6): 1929-1952

    [17] Xu C Q, Zhang Z C, Ye Q. A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nano-crystallite. Materials Letters, 2004, 58(11): 1671-1676

    [18] Wang X H, Shao M W, Shao G, Wang S W. Tris(8-hydroxyquinoline) aluminum nanoribbons: facile solvothermal preparation and photoconductivity studies. Journal of Nanoscience and Nanotechnology, 2009, 9(8): 4709-4714

    [19] Chen W, Peng Q, Li Y D. Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Crystal Growth & Design, 2008, 8(2): 564-567

    [20] Pan H C, Liang F P, Mao C J, Zhu J J, Chen H Y. Highly luminescent zinc(II)-bis(8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing. Journal of Physical Chemistry B, 2007, 111(20): 5767-5772

    [21] Hesse R. Indexing powder photographs of tetragonal, hexagonal and orthorhombic crystals. Acta Crystallographica, 1948, 1(4): 200-207

    [22] Lipson H. Indexing powder photographs of orthorhombic crystals. Acta Crystallographica, 1949, 2(1): 43-45

    [23] Tackett J E, Sawyer D T. Properties and infrared spectra in the potassium bromide region of 8-quinolinol and its metal chelates. Inorganic Chemistry, 1964, 3(5): 692-696

    [24] Tang Q X, Li H X, Liu Y L, HuWP. High-performance air-stable ntype transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. Journal of the American Chemical Society, 2006, 128(45): 14634-14639

    [25] Li Q H,Wan Q, Liang Y X, Wang T H. Electronic transport through individual ZnO nanowires. Applied Physics Letters, 2004, 84(22): 4556-4558

    Li LIU, Mingwang SHAO, Xiuhua WANG. Bis-(8-hydroxyquinoline) mercury nanoribbons: preparation, characterization and photoconductivity[J]. Frontiers of Optoelectronics, 2010, 3(3): 228
    Download Citation