• Chinese Journal of Lasers
  • Vol. 48, Issue 9, 0901003 (2021)
Haiyue Pang1, Zhaoyun Li1、2, Huan Li1, Zhiyong Tao1, and Yaxian Fan1、*
Author Affiliations
  • 1Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing, School of Information Communication, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • 2The 34th Research Institute of China Electronics Technology Group Corporation, Guilin, Guangxi 541004, China
  • show less
    DOI: 10.3788/CJL202148.0901003 Cite this Article Set citation alerts
    Haiyue Pang, Zhaoyun Li, Huan Li, Zhiyong Tao, Yaxian Fan. Generation of 500-GHz Broadband Dual-Polarization Optical Frequency Comb[J]. Chinese Journal of Lasers, 2021, 48(9): 0901003 Copy Citation Text show less
    References

    [1] Yasui T, Yokoyama S, Inaba H et al. Terahertz frequency metrology based on frequency comb[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 191-201(2011).

    [2] Yokoyama S, Nakamura R, Nose M et al. Terahertz spectrum analyzer based on a terahertz frequency comb[J]. Optics Express, 16, 13052-13061(2008).

    [3] Doloca N R, Meiners-Hagen K, Wedde M et al. Absolute distance measurement system using a femtosecond laser as a modulator[J]. Measurement Science and Technology, 21, 115302(2010). http://adsabs.harvard.edu/abs/2010MeScT..21k5302D

    [4] Zhao Y H, Qu X H, Zhang F M et al. Theoretical analysis and application of absolute distance measurements based on electro-optic modulation and optical frequency comb[J]. Chinese Journal of Lasers, 45, 1204002(2018).

    [5] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [6] Gao S, Gao Y, He S. Photonic generation of tunable multi-frequency microwave source[J]. Electronics Letters, 46, 236-237(2010).

    [7] Xiao S, Hollberg L, Diddams S A. Low-noise synthesis of microwave and millimetre-wave signals with optical frequency comb generator[J]. Electronics Letters, 45, 170-171(2009).

    [8] Yang X W, Xu K, Yin J et al. Optical frequency comb based multi-band microwave frequency conversion for satellite applications[J]. Optics Express, 22, 869-877(2014).

    [9] Quinlan F, Ozharar S, Gee S et al. Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources[J]. Journal of Optics A: Pure and Applied Optics, 11, 103001(2009). http://www.ingentaconnect.com/content/iop/jopta/2009/00000011/00000010/art103001

    [10] Davila-Rodriguez J, Bagnell K, Delfyett P J. Frequency stability of a 10 GHz optical frequency comb from a semiconductor-based mode-locked laser with an intracavity 10, 000 finesse etalon[J]. Optics Letters, 38, 3665-3668(2013). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-18-3665

    [11] Leaird D E, Weiner A M, Seo D. Wideband flat optical frequency comb generated from a semiconductor based 10 GHz mode-locked laser with intra-cavity Fabry-Perot etalon[J]. Journal of IEEE, 18, 19-24(2014). http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07015753

    [12] He C, Pan S L, Guo R H et al. Ultraflat optical frequency comb generated based on cascaded polarization modulators[J]. Optics Letters, 37, 3834-3836(2012). http://www.ncbi.nlm.nih.gov/pubmed/23041875

    [13] Ozharar S, Quinlan F, Ozdur I et al. Ultraflat optical comb generation by phase-only modulation of continuous-wave light[J]. IEEE Photonics Technology Letters, 20, 36-38(2008).

    [14] Wang Q, Huo L, Xing Y F et al. Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator[J]. Optics Letters, 39, 3050-3053(2014). http://europepmc.org/abstract/med/24978271

    [15] Xie H L, Jia K X, Chen J W et al. Tunable optical frequency comb based on coupled radio frequency signal and single Mach-Zehnder modulator[J]. Chinese Journal of Lasers, 47, 0706002(2020).

    [16] Anandarajah P M, Maher R, Xu Y Q et al. Generation of coherent multicarrier signals by gain switching of discrete mode lasers[J]. IEEE Photonics Journal, 3, 112-122(2011). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5686909

    [17] Zhu H T, Wang R, Pu T et al. A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser[J]. Laser Physics Letters, 14, 026201(2017). http://adsabs.harvard.edu/abs/2017LaPhL..14b6201Z

    [18] Prior E, de Dios C, Ortsiefer M et al. Understanding VCSEL-based gain switching optical frequency combs: experimental study of polarization dynamics[J]. Journal of Lightwave Technology, 33, 4572-4579(2015). http://dx.doi.org/10.1109/jlt.2015.2476956

    [19] Rosado A, Pérez-Serrano A, Tijero J M G et al. Experimental study of optical frequency comb generation in gain-switched semiconductor lasers[J]. Optics & Laser Technology, 108, 542-550(2018). http://www.sciencedirect.com/science/article/pii/S003039921830820X

    [20] Koyama F. Recent advances of VCSEL photonics[J]. Journal of Lightwave Technology, 24, 4502-4513(2006).

    [21] Iga K. Surface-emitting laser-its birth and generation of new optoelectronics field[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1201-1215(2000). http://ieeexplore.ieee.org/document/902168/references

    [22] Martin-Regalado J, Prati F, Miguel M S et al. Polarization properties of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 33, 765-783(1997).

    [23] Panajotov K. Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications[J]. AIP Conference Proceedings, 560, 403-417(2001).

    [24] Prior E, de Dios C, Criado R et al. Dynamics of dual-polarization VCSEL-based optical frequency combs under optical injection locking[J]. Optics Letters, 41, 4083-4086(2016). http://www.ncbi.nlm.nih.gov/pubmed/27607978

    [25] Quirce A, de Dios C, Valle A et al. VCSEL-based optical frequency combs expansion induced by polarized optical injection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-9(2019). http://ieeexplore.ieee.org/document/8581468/

    [26] Li G Y, Yang W Y, Wu Z M et al. Broadband optical frequency comb generation based on a current-modulated 1550 nm-VCSEL subject to optical injection[J]. Acta Photonica Sinica, 48, 1214003(2019).

    [27] Fan L, Zheng X M, Xia G Q et al. Generation of two-channel broadband optical frequency comb using gain-switched 850 nm-VCSEL under orthogonal optical injection[J]. Chinese Journal of Lasers, 47, 0701022(2020).

    [28] Wang Y L, Yang L H, Lin J R et al. Absolute distance measurement based on coherent detection by femtosecond optical frequency comb[J]. Acta Optica Sinica, 39, 0112003(2019).

    [29] Liao J F, Sun J Q. Polarization dynamics and chaotic synchronization in unidirectionally coupled VCSELs subjected to optoelectronic feedback[J]. Optics Communications, 295, 188-196(2013). http://www.sciencedirect.com/science/article/pii/S0030401813000023

    [30] Torre M, Hurtado A, Quirce A et al. Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection[J]. IEEE Journal of Quantum Electronics, 47, 92-99(2011). http://ieeexplore.ieee.org/document/5676404

    [31] Cano E P, de Dios Fernandez C, Serrano Á R C et al. Experimental study of VCSEL-based optical frequency comb generators[J]. IEEE Photonics Technology Letters, 26, 2118-2121(2014).

    [32] Prior E, de Dios C, Criado Á R et al. Expansion of VCSEL-based optical frequency combs in the sub-THz span: comparison of non-linear techniques[J]. Journal of Lightwave Technology, 34, 4135-4142(2016).

    [33] Rosado A, Martin E P, Pérez-Serrano A et al. Optical frequency comb generation via pulsed gain-switching in externally-injected semiconductor lasers using step-recovery diodes[J]. Optics & Laser Technology, 131, 106392(2020). http://www.sciencedirect.com/science/article/pii/S0030399220310252

    Haiyue Pang, Zhaoyun Li, Huan Li, Zhiyong Tao, Yaxian Fan. Generation of 500-GHz Broadband Dual-Polarization Optical Frequency Comb[J]. Chinese Journal of Lasers, 2021, 48(9): 0901003
    Download Citation